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ABSTRACT 

Current autonomous vehicle interoperability is limited by vehicle-specific data 

formats and support systems.  Until a standardized approach to autonomous vehicle 

command and control is adopted, true interoperability will remain elusive.  This work 

explores the applicability of a data model supporting arbitrary vehicles using the 

Extensible Markup Language (XML).  An exemplar, the Autonomous Vehicle Command 

Language (AVCL), encapsulates behavior-scripted mission definition, goal-based 

mission definition, inter-vehicle communication, and mission results. 

Broad applicability is obtained through the development of a behavior set 

capturing arbitrary vehicle activities, and automated conversion of AVCL to and from 

vehicle-specific formats.  The former uses task-level behaviors suitable for mission 

scripting and goal decomposition.  Translations use the Extensible Stylesheet Language 

for Transformation, XML data binding, context-free language parsing, and artificial 

intelligence machine learning and search techniques.  Translation capability is 

demonstrated through mappings of AVCL to and from multiple vehicle-specific formats. 

A final demonstration of the power of a common autonomous vehicle data model 

is provided by the implementation of a hybrid control architecture.  The model’s vehicle-

independence and the ability to generate vehicle-specific data are leveraged in the design 

of an architecture that provides increased autonomy by augmenting a vehicle’s existing 

controller.  The utility of this architecture is demonstrated through implementation on the 

Naval Postgraduate School ARIES unmanned underwater vehicle. 
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I. INTRODUCTION, MOTIVATION, AND OBJECTIVES 

A. DISSERTATION STATEMENT 
Recent events have highlighted numerous military and civilian applications for 

which autonomous vehicles might prove useful.  Further, a number of these applications 

can benefit from the use of multiple, possibly dissimilar autonomous vehicles operating 

in a cooperative, or at least complementary, manner.  Unfortunately, currently available 

autonomous vehicles are, by and large, designed to operate as independent entities 

making coordinated multi-vehicle missions unfeasible from a practical standpoint.  

Additionally, vehicle-specific data formats and mission planning systems make planning 

complementary multi-vehicle missions (i.e., missions in which multiple vehicles operate 

independently to accomplish common goals without direct interaction or cooperation) 

problematic. 

Significant recent research has investigated methodologies and protocols to foster 

interoperability among autonomous vehicles, however, the preponderance of this research 

has assumed that the vehicles involved are inherently compatible.  That is, either the 

multi-vehicle system consists solely of one type of vehicle, or all vehicles use the same 

language for mission specification and inter-vehicle communication.  Unfortunately, 

assumed compatibility is unrealistic given current inventories of legacy vehicles and the 

parallel development of vehicles by various commercial, academic, and government 

entities. 

The preceding observations call into question the inherent suitability of both 

current and developmental vehicles for multi-vehicle operations:  currently available 

autonomous vehicles do not directly support coordinated operations, and forthcoming 

vehicles will depend on vehicle-specific data formats and protocols to provide 

compatibility with similarly programmed vehicles.  It is this implicit shortcoming in the 

capabilities of both current and envisioned autonomous vehicles that this research 

addresses. 

The main thrust of this work is to demonstrate the use of a common data model or 

ontology to foster a level of compatibility among autonomous vehicles regardless of 
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inherent vehicle differences.  Ultimately, the compatibility provided by the common data 

model will foster inter-vehicle coordination and cooperative operations.  Discussed in 

some detail in Chapter IV, the term ontology refers to a formal description of a 

vocabulary, including word meanings, assumptions and relationships, that can be used to 

describe and represent an area of knowledge (Daconta, et al., 03), in this case 

autonomous vehicle operations.  An exemplar has been defined and implemented using 

the Extensible Markup Language (XML) schema (W3C 04-2)(W3C 04-3) and utilized as 

a framework for autonomous vehicle tasking and inter-vehicle communications between 

dissimilar vehicles.  Further, the ability to automatically convert between this model-

constrained format and vehicle-specific formats as required is demonstrated. 

Additionally, this research uses the exemplar data model to improve upon existing 

autonomous vehicle control paradigms by incorporating multiple levels of a layered 

control architecture in the same data model.  Specifically, an extension to the Rational 

Behavior Model (RBM) (Byrnes, 93), a hybrid control architecture, is implemented that 

connects high-level (Strategic) control based on a declarative goal-based mission 

specification in the form of a finite state machine with mid-level (Tactical) control using 

sequentially initiated task-level behaviors. 

B. MOTIVATION AND OVERVIEW 

1. The Multiple Autonomous Vehicle Inter-Operability Requirement 
The military services have recognized the distinct advantages provided by the 

utilization of unmanned vehicles for a variety of missions that are considered too “dirty, 

dull, or dangerous” for humans (JRP, 04).  Unmanned Underwater Vehicles (UUV) were 

recently used in mine countermeasure and search and rescue operations in support of 

Operation Iraqi Freedom, crash and salvage operations in support of space shuttle 

Discovery recovery operations, and berthing surveys in support of port security 

(Simmons, 04).  While none of these operations involved multi-vehicle operations, they 

have provided a glimpse of the reliance on UUVs in future naval operations. 

The U.S. Navy’s Unmanned Undersea Vehicle Master Plan has identified nine 

potential signature capabilities of particular interest including intelligence, surveillance 

and reconnaissance, mine countermeasures, communication / navigation network node, 

oceanography, and anti-submarine warfare (DON, 04).  Capability evolution in each of 
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these areas is anticipated to involve increasing autonomy as well as increasing numbers 

of vehicles operating together.  Two exemplar anticipated evolutions in the signature 

capabilities involving coordinated multiple-UUV capabilities are mobile undersea 

networks (communications / navigation aid) and Shallow Water Autonomous 

Reconnaissance Modules (DON, 04)(St. Peter and LaPoint, 04).  Autonomy and 

communication are considered key technology requirements for all four signature 

capabilities, while “multiple vehicles working together” is identified as having associated 

risks that must be addressed in order to achieve the target capabilities (DON, 04). 

A broader analysis of the potential application of autonomous vehicles in a naval 

environment can be found in the National Academy of Sciences (NAS) Report on 

Unmanned Vehicles in Support of Naval Operations (NAS, 05) which identifies a 

number of potential military missions autonomous vehicles.  In addition to reiterating the 

UUV missions described in the Navy’s UUV Master Plan, this report discusses the 

potential use of unmanned air (UAV), ground (UGV), and surface (USV) vehicles for 

intelligence, surveillance and reconnaissance, suppression of enemy air defense, 

amphibious landing zone reconnaissance, concealment area (e.g., caves or building 

interiors) investigation, ordnance disposal and mine clearance, logistics, and shore 

bombardment fire control observation.  In addition to a detailed discussion of potential 

uses, this report rigorously analyzes the applicability of current technologies, identifies 

cultural, research, and acquisition shortcomings that inhibit the development of mission-

suitable vehicles, and proposes roadmaps to achieve required capabilities. 

A product similar to the Navy’s Unmanned Undersea Vehicle Master Plan is the 

Department of Defense Joint Robotics Program Fiscal Year 2004 Master Plan which 

focuses on UGVs.  This document outlines the near and mid-term goals for UGVs and 

defines development priorities to achieve them.  While not directly addressing multi-

vehicle operations, it does address a number of target missions for which coordinated 

multi-vehicle operations might be advantageous including reconnaissance, surveillance 

and target acquisition, detection and neutralization of minefields, force protection, and 

contaminated area operations (JRP, 04).  Excerpted from this work, Figure 1.1 illustrates 

the projected transition from remotely commanded to fully autonomous operations that 

was identified by (DON, 04) as a key technology.  Among the primary near-term goals 
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identified is the development of a common architecture for unmanned vehicles—the Joint 

Architecture for Unmanned Systems (JAUS) (JRP, 04), which is covered in more detail 

in Chapter II.  For now it is sufficient to note that JAUS defines components that can be 

combined to design arbitrary unmanned or autonomous vehicles as well as a message set 

for communication between individual components or vehicles.  A significant aspect of 

JAUS that it is platform independent so long as the platform is “JAUS compliant.” 

 
Figure 1.1.   Projected Evolution of the Level of Autonomy in Unmanned Vehicles from 

1990 to 2020 (From: JRP, 04) 

 
UAV utilization has been well documented in recent military operations, but the 

vehicles concerned were primarily remotely operated vice autonomous.  Additionally, the 

military services have not, as yet, developed a master plan for UAV development or 

procurement, but tactical UAV utilization has been doctrinized to some extent in service-

specific operational guides such as (CNO, 04).  Unfortunately, as UAV tasking increases, 

the limitations of remotely operated vehicles due to operator overload are being reached.  

The obvious solution is to use increased autonomy to enable individual operators to 

monitor and control more vehicles simultaneously (McLoud and Wu, 04).  A predictable 

evolution of increased individual UAV autonomy as an enabler of multi-vehicle 

operations is increased multi-vehicle autonomy as evidenced by recent research in the 

area of cooperative planning for UAVs (Ahner, 04)(Neushul, 03). 
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To date, the use of unmanned and autonomous vehicles for nonmilitary 

applications, whether as single units or coordinating groups, has been somewhat limited 

and does not approach the extent of utilization in military settings, at least in part due to 

cost-versus-gain issues.  However many of the military applications for unmanned and 

autonomous vehicles have fairly obvious non-military parallels.  For instance many 

aspects of surveillance and interdiction are applicable to homeland defense and border 

security while the search and detect aspects of mine countermeasures closely parallel 

those of maritime search and rescue or crash and salvage operations.  As an example, the 

National Oceanic and Atmospheric Administration has proposed autonomous underwater 

vehicles for coastal survey, fisheries management, ocean exploration, and physical 

oceanographic research (Manley, 04).  

2. A Common Data Model as a Coordinated Operations Enabler 
Notwithstanding that coordinated multi-vehicle operations are now generally 

acknowledged as being desirable, the preponderance of research to date assumes that the 

vehicles involved are inherently compatible.  That is, either the multi-vehicle system 

consists solely of one type of vehicle, or all vehicles use the same language for mission 

specification and inter-vehicle communication.  This is unrealistic given current 

inventories of diverse legacy vehicles and the unsynchronized, parallel development of 

vehicles by various commercial, academic, and government entities, but a common data 

model can go a long way in filling this interoperability shortcoming. 

Fortunately, arbitrary vehicles of a given type have significant functional 

similarities regardless of mission specification methodology and available vehicle-

specific commands.  For instance, while individual autonomous ground vehicles may 

have different means and speeds of locomotion, spatial positioning and orientation for 

any ground vehicle can be ordered as a waypoint (geographic position and possibly 

heading).  Speed (as a percentage of max speed) and path can also be part of the order, or 

can be left to the individual vehicle (which presumably has embedded local path planning 

and obstacle avoidance).  This inherent similarity in the capabilities of all vehicles of a 

given type (and even those of different types in many cases) allows for the definition of a 

set of task-level or script commands that can be used individually or as composite 

commands to capture the semantics of arbitrary vehicle-specific commands.  In short, for 
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any mission defined in a vehicle-specific language, an equivalent mission can be defined 

using task-level behaviors defined by a more general data model. 

The ability to define vehicle-independent missions that are equivalent to arbitrary 

vehicle-specific missions is only part of the problem—in and of itself, a common data 

model is not the goal.  Rather, it needs to serve as a bridge between existing and future 

vehicle-specific languages as well as their human operators.  That is, a mechanism must 

exist to automatically convert between vehicle-specific data formats and the common 

data model.  This research demonstrates the use of XML technologies such as the 

Extensible Stylesheet Language for Transformations (XSLT) and XML data binding to 

convert exemplar data-model-compliant documents into arbitrary vehicle-specific 

formats.  Similarly, context-free grammar definitions for vehicle-specific data formats are 

used as a linchpin of automated translation of vehicle-specific data into data-model-

compliant XML.  Discussed in detail in Chapter V, this procedure provides a suitable 

methodology for automated conversion between arbitrary vehicle-specific data formats 

by leveraging the generality of a vehicle-independent data model with XSLT, XML data 

binding and context-free-grammar-based parsing of non-XML data formats. 

Intervehicle communication is essential to effective coordinated operations.  As 

with tasking, individual vehicles have various communications capabilities, protocols and 

message sets that must be reconciled if they are to interoperate.  A methodology similar 

to that used to convert missions from one vehicle-specific language to another is used to 

convert vehicle-specific communications as required.  An exemplar architecture for 

unmanned system messaging is provided by JAUS which incorporates an explicitly 

defined message set and format (JAUS 04-4).  Although JAUS in its present form is more 

suitable for remotely operated vehicles than autonomous vehicles, similarities exist 

between a number of JAUS messages and communications aspects of the exemplar data 

model developed in this research.  As with mission specification, XSLT, XML data 

binding, and context-free grammars are used to convert between data-model-compliant 

XML and vehicle-specific message formats (including JAUS when appropriate).  

Additionally, XML Schema-Based Binary Compression (XSBC) is used to facilitate the 

transmission of admittedly bulky XML messages over noisy and bandwidth-limited 

communications paths (XSBC is covered in Chapter III). 
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Automated conversion of vehicle-specific data from one robot-tasking format to 

another is a powerful capability that can significantly enhance interoperability between 

dissimilar vehicles, but it does not directly address increased autonomy.  A vehicle-

independent data model, however, can be designed in such a way as to support increased 

autonomy.  The mission scripting task-level behaviors are by nature well suited to many 

artificial intelligence planning algorithms.  Each command has preconditions that must be 

true in order for it to execute as well as postconditions that are expected to be true upon 

successful completion.  A higher-level, goal-based mission specification vocabulary can 

be designed to take advantage of this observation.  Goal-based missions are defined 

declaratively using this vocabulary, and planning algorithms generate sequential plans 

that achieve the declarative goals using task-level behaviors.  Once generated, the task-

level scripts are converted into vehicle-specific missions for execution.  This capability is 

demonstrated off line and in real time as an implicit function of a multi-layer vehicle-

independent control architecture. 

3. Data Model Use for Cross-Application Data Sharing 
Knowledge representation has long been a topic of interest in the field of artificial 

intelligence but the design of data models to facilitate dissimilar system interoperability is 

less explored.  The evolution of the Internet, however, has led to an increased desire to 

share information between applications and systems and also to make data more easily 

accessible.  In the database domain this trend has led to the development of protocols and 

application programmer’s interfaces (API) along the lines of the Open DataBase 

Connectivity standard.  On a broader scale XML and associated technologies have 

emerged as a mechanism for facilitating structured data exchange among highly disparate 

systems.  In particular, the use of XSLT has become the  method of choice for mappings 

between the various data models of dissimilar systems and applications (Kay, 03).  

Further, the notion of the Semantic Web is a primary driver behind current research into 

ontologies and conceptual data models.  Semantic Web approaches often include the goal 

of enabling applications to automatically locate and utilize available data sources without 

a priori knowledge of their content, format or even their existence (Daconta, et al., 02). 

Given the growth of electronic commerce in recent years, it is understandable that 

much current research in this area focuses on business applications relying on the Internet 
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(Fensel, 01).  Efforts along the lines of the Joint Consultation, Command and Control 

Information Exchange Data Model (JC3IEDM), however, provide an indication that 

common data models can effectively facilitate information exchange between systems 

that are not specifically designed to operate together regardless of whether the exchange 

takes place over the internet or not.  JC3IEDM is a multi-lateral effort to design a data 

model for the exchange of command and control information between military systems.  

Although JC3IEDM and its applicability to this research are discussed in more detail in 

Chapter II, it is worth noting here that JC3IEDM places no requirements whatsoever on 

the internal data models of individual applications—it is concerned solely with data that 

is exchanged.  That is, individual applications and systems can represent and interpret 

internal data in any way, but in order to exchange data with another system, it must be 

JC3IEDM-compliant (MIP, 03-1). 

The application of a common data model to the domain of autonomous vehicle 

command and control as implemented in this research takes a similar approach.  With the 

exception of the data-model-centric multi-layer controller discussed in Chapter VII, 

individual vehicles are not required to utilize the data model internally.  One difference 

between the approach of this research and that of JC3IEDM is a relaxation of the 

requirement for model-compliant data transfers so long as the data model is used as the 

bridge between systems.  In other words, the data transmission can be in any format so 

long as it is converted from the transmitting system’s native format into a common data-

model-compliant format and eventually into the receiving system’s native format.  This 

provides the flexibility to perform the required translations at the most appropriate 

location to take advantage of vehicle capabilities, deal with communications path 

limitations, etc. 

C. OBJECTIVES 
This dissertation addresses the following research questions: 

• Can a single data model be used to accurately represent tasking for 
arbitrary autonomous vehicles?  The obvious (but unwieldy) answer is to 
explicitly incorporate the tasking semantics of all vehicles of interest into 
the data model.  This, however, provides little basis for automatic 
translation between the model and arbitrary vehicle-specific formats.  A 
more tenable solution takes advantage of the fact that despite differing 
lexical and semantic tasking formats, at the most basic levels, autonomous 
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vehicle tasking is implemented through the deliberate execution of one or 
more elements from a finite set of simple tasks or behaviors.  Rephrased, 
most robots share similar functional capabilities despite major differences 
in communications and tasking styles.  Identifying a suitable set of task-
level behaviors is, therefore, a key to the development of a useful common 
data model for autonomous vehicle tasking.  Ultimately, the elements of 
this set can be used to capture the semantics of arbitrary vehicle-specific 
commands under the umbrella of a single ontology. 

• Can a common ontology or data model be utilized as a bridge between 
vehicle-specific tasking and communications languages of incompatible 
vehicles?  That is, can a common data model be defined in such a way as 
to facilitate the automated conversion of arbitrary vehicle-specific data to 
model-compliant data and vice versa?  Resolution of this issue depends on 
the previous research question—implementation notwithstanding, if 
arbitrary vehicle-specific data formats cannot be accurately represented in 
the common data model, conversion (automated or not) between the 
common data model and vehicle-specific formats will not be possible.  
Assuming the availability of an appropriate task-level behavior set, 
translation mechanisms must still be developed.  Implementation of the 
data model using XML provides a partial solution.  Through the use of 
XML utilities such as the XSLT and XML-data binding, data-model-
compliant data is translated into arbitrary vehicle-specific formats without 
difficulty.  The requirement to convert non-XML vehicle-specific data 
formats into the common data model is more problematic.  Recognizing, 
however, that vehicle-specific data formats are in reality context-free 
languages provides a basis for automated translation (Crangle and Suppes, 
94).  Formal definition of vehicle-specific data formats using context-free 
grammars enables the generation of parse trees that are traversed in depth-
first order and translated to the common data model using templates. 

• Can the data model described in the previous two paragraphs be expanded 
to capture vehicle-specific data of a more symbolic nature?  While the 
task-level control paradigm is suitable for most currently available 
vehicles, a number of autonomous vehicle control architectures that 
support higher-level reasoning have been the subject of recent research 
(Byrnes, 93)(Rosenblatt, 97)(Ricard and Kolitz, 02)(Stentz, 04).  These 
control architectures are at least theoretically capable of interpreting data 
of a more symbolic or declarative nature (e.g., tasking as a set of high-
level goals as opposed to a sequentially executed script).  One implication 
relating to the use of a common data model raised by this potential for 
declarative tasking is the required capture of the declarative semantics by 
the data model—something beyond the capability of the task-level 
behavior set.  It is therefore necessary to explicitly provide for symbolic 
definition of missions.  In the exemplar data model, declarative missions 
are defined as in the form of a finite state machine.  Individual states 
correspond to individual mission goals (e.g., search a geographic area) and 
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transitions are executed when the vehicle succeeds (or fails) in the 
accomplishment of the goal corresponding to the current state. 

• A second, implication of declarative mission definition is the requirement 
for conversion between declarative and task-level mission definitions.  For 
a common autonomous vehicle data model to be compatible with both 
vehicles utilizing task-level behaviors and those utilizing symbolic 
mission definitions, mechanisms must be developed for converting 
between declarative symbolically defined missions and sequential task-
level defined missions.  The previously discussed XSLT and context-free-
grammar-based conversions do not suffice for this purpose.  This research 
demonstrates that translation of symbolic missions to task-level missions 
can be accomplished through fairly traditional artificial intelligence 
planning algorithms such as means-ends analysis, GraphPlan and A-Star 
(A*) search (Luger, 02)(Russell and Norvig, 03).  Upward translation of 
task-level missions to symbolic missions is a more difficult problem 
because such interpretation requires inference of intent.  That is, what goal 
is a particular sequence of task-level behaviors intended to accomplish?  
This research explores the use of machine learning techniques such as 
case-based reasoning and naïve Bayesian analysis to infer reasonable 
“intent” from task-level scripts. 

• A final research question concerns the use of a common data model to 
support and extend existing autonomous vehicle control architectures.  
Common characteristics of hierarchical and hybrid control architectures 
(discussed in Chapter II) are a top-most level utilizing a general or abstract 
definition of the mission to direct the activities of a lower level through 
the use of specific vehicle behaviors or primitive objectives.  The 
previously discussed translation of declarative missions to ordered lists of 
task-level behaviors is similar enough to the requirements of multi-layered 
control architecture implementation that it raises the following question:  
can a common data model capable of representing both declarative and 
task-level missions be utilized as an integral part of a multi-layer control 
architecture?  This possibility is explored by extending the RBM to utilize 
the common data model symbolic mission definition capability at the 
Strategic level and the task-level behavior set at the Tactical and 
Execution levels. 

D. DISSERTATION ORGANIZATION 
Chapter II of this dissertation comprises an overview of related work.  Of specific 

interest are other languages, data formats, and methodologies currently used for 

autonomous vehicle command, mission specification, multi-vehicle system definitions, 

and communications along with the relative strengths and weaknesses of reach.  Chapter 

III provides an overview of XML and applicable XML technologies that are utilized to 

demonstrate the concepts and methodologies explored in this research.  Chapter IV 
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begins with a discussion of the similarities and differences between ontologies and data 

models, and concludes with an overview of data-model requirements for the support of 

this work including the task-level behavior set, declarative mission specification, 

communications and mission results data.  Also included in Chapter IV is a brief 

discussion of the exemplar data model implemented in support of this research—the 

Autonomous Vehicle Command Language (AVCL).  Chapter V provides a detailed 

analysis of the approaches for converting between vehicle-specific formats and the 

vehicle-independent data model.  Chapter VI covers the implementation of planning 

algorithms and other methodologies for conversions between declaratively defined 

missions to task-level behavior scripts and the inference of appropriate goals 

corresponding to task-level behavior scripts.  Chapter VII deals with the extension of the 

RBM architecture using the exemplar data model and the implementation of this 

extended architecture on an existing UUV.  Chapter VIII covers simulation and real-

world experimentation and results supporting this research.  The dissertation concludes 

with Chapter IX’s discussion of conclusions to be drawn from this research and 

recommendations for future work.  Appendices are provide to describe the specific 

content structure and semantics of the exemplar data model and the mission-planning, 

rehearsal and simulation application that was developed to support this research.
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II. REVIEW OF RELATED WORK  

A. INTRODUCTION 
Two areas of current research that are relevant to the development of a common 

autonomous vehicle ontology are addressed in this chapter.  First is a survey of 

commonly utilized autonomous vehicle control architectures, their relative strengths and 

weaknesses and the potential means in which this research complements or augments 

them.  The main point to be taken from this portion of the discussion is that a common 

data model is capable of supporting any of these methods, thus providing a means of 

facilitating interoperability between autonomous vehicles utilizing different control 

paradigms. 

Following the discussion of general autonomous vehicle control architectures, a 

brief discussion of the RBM architecture is provided in order to illustrate how a common 

data model supporting abstract and declarative mission definition along with sequential 

task-level mission definition can be inherently compatible with a multi-layered 

architecture. 

The final section of this chapter covers research in the area of platform-

independent languages, architectures and data models.  A number of proposed 

autonomous vehicle programming languages and architectures potentially falling into this 

genre such as Robotalk (Phoha and Schmiedekamp, 04), Yampa (Hudak, et al., 03) and 

Player / Stage (Vaughan, et al., 03) are not covered because they are utilized to program 

autonomous vehicle controllers symbolically in the same manner that Lisp or Prolog 

might be used to develop traditional artificial intelligence applications.  Of more interest 

from the standpoint of a common data model are those languages and data formats that 

are used to define individual missions in a relatively abstract and straightforward manner 

and those that are used for inter-vehicle communications.  Specifically covered here are 

the Naval Undersea Warfare Center’s and University of Massachusetts’ Common Control 

Language (CCL), Woods Hole Oceanographic Institution’s Compact Control Language 

(C2L), JAUS, and the Multilateral Interoperability Programme’s JC3IEDM. 
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B. AUTONOMOUS VEHICLE CONTROL PARADIGMS 

1. Scripted Control 
Of all the methods commonly utilized for autonomous vehicle control, scripted 

control is the most straightforward.  In this methodology, a vehicle mission is defined as 

a series of discrete commands that can include open-loop commands that order control 

settings independent from vehicle response (e.g., rudder deflection or power setting), 

closed-loop commands (e.g., headings, speeds, or waypoints), or commands that order 

behaviors not directly related to vehicle control (e.g., load a new mission script).  

Examples of languages used for scripted control of autonomous vehicles include those 

described in (Brutzman, 94), (Davis, 96) and (Marco, 01) that have been used by the 

Naval Postgraduate School (NPS) Phoenix and Acoustic Radio Interactive Exploratory 

Server (ARIES) UUVs, and (Hydroid, 01) for defining Remote Environmental Measuring 

UnitS (REMUS) UUV missions.  Figure 2.1 shows an example Phoenix or ARIES 

mission using the language described in (Brutzman, 94) and (Davis, 96).  In this tasking 

language, each scripted command appears on a single line, begins with a reserved 

keyword, and is followed by zero or more (sometimes optional) parameters. 

The most significant advantages of scripted autonomous vehicle control are 

clarity and simplicity.  Since the mission consists of a sequentially executed series of 

steps, it can be intuitively defined in a fairly straightforward manner.  Additionally, 

vehicles executing scripted missions behave in a predictable manner—they execute each 

command in their script in order until the mission is concluded or a command cannot be 

completed successfully (in such cases, the most common response is to execute a 

predefined mission abort script). The most obvious disadvantage to autonomous vehicle 

control using fixed scripts is the lack of flexibility.  The environments in which 

autonomous vehicles operate are inherently dynamic, making the ability to adapt to 

changing conditions highly desirable.  Additionally, it is highly unlikely that an ideal 

mission can be defined for anything more than the most mundane tasking using a fixed-

sequence script.  There exists strong motivation to provide a mechanism by which the 

vehicle can adjust its mission as more information about the environment is obtained. 

While this lack of flexibility limits the capabilities of pure scripting, this control 

paradigm remains an integral part of many more advanced control architectures that will 
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be discussed in subsequent sections.  One example is provided in the (Nicholson, 04) 

implementation of the RBM, a three-layer control architecture modeled after the 

command hierarchy of U.S. Navy submarines (Byrnes, 93)(Healey, et al., 96).  At the top 

(Strategic) RBM layer, an abstract mission definition is utilized to plan a series of script 

commands that are issued to the middle (Tactical) level for execution.  The Tactical level 

conducts any required numerical processing and provides individual control orders to the 

lowest (Execution) level which is in turn responsible for actual vehicle hardware 

interface.  In the (Nicholson 04) implementation, the RBM Strategic level generates 

scripts which are issued to the Tactical level.  As the mission progresses, new scripts are 

generated by the Strategic level and issued to the Tactical level replacing any previously 

issued script.  Viewed by itself then, this RBM Tactical level implementation relies on 

scripted control.  The addition of higher level control structure, therefore, extends the 

capability of scripted control without eliminating it and provides an example of the 

natural evolution of robust multi-layer control paradigms from simple scripted control. 

 
Figure 2.1.   A Scripted Phoenix Unmanned Underwater Vehicle (UUV) Mission in the 

Behavior Scripting Language described in (Brutzman, 94) and (Davis, 96) 

POSITION 0 0 0 
RPM 500 
WAYPOINT 100 10 10 
HOVER 100 50 10 
GPSFIX 
RPM 700 
WAYPOINT 0 50 5 
WAYPOINT 0 100 5 
WAYPOINT 100 100 5 
HOVER 100 150 10 
GPSFIX 
WAYPOINT 0 150 10 
WAYPOINT 0 200 10 
WAYPOINT 100 200 10 
WAYPOINT 100 250 10 
HOVER 0 250 10 
GPSFIX 
HOVER 0 0 10 360 
DEPTH 0 
WAIT 25 
QUIT 
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Seen against this frequently utilized backdrop, a common autonomous vehicle 

data model can be applied to the domain of script-based control in a number of ways.  

The most obvious is the mapping and automatic conversion between task-level behaviors 

and vehicle-specific script commands.  Additionally, a common data model supporting 

both high-level declarative and task-level mission definition and mechanisms for 

automatically translating missions of one form to the other can be used to intuitively 

develop mission scripts that meet declarative mission requirements.  More subtle, but 

possibly more interesting, is the use of a data-model-based planner in place of (rather 

than as a data source for) upper level of a multi-layer control architecture like the RBM 

Strategic level.  By extension, therefore, this approach provides a pattern for the use of a 

generic data-model-based planner as a plug-in higher-level controller for arbitrary 

vehicles that normally run only predefined scripts. 

2. Hierarchical Control 
A second autonomous vehicle control methodology that is similar in many 

respects to scripted control is hierarchical control.  As with scripted control, a mission 

consists of a series of steps or tasks.  Rather than defining the entire mission in terms of 

the most atomic steps, a layered approach is utilized where higher layers contain complex 

tasks and lower layers represent the complex tasks as a series or simpler sub-tasks as 

depicted in Figure 2.2.  Layers at increasing depths of the hierarchy divide complex tasks 

into increasingly specific sub-tasks.  Early hierarchical control exemplars are provided by 

the Task Decomposition architecture described in (Albus, 93) and the Activity-Based 

Mission Planning and Plan Management system described in (Hall and Farrell, 94).  Both 

of these systems possess all of the functionality of more modern hierarchical control 

architectures.  As a more specific example of hierarchical planning, a UAV complex task 

might be “search area X.”  This task may be divided into subtasks “transit to area X,” 

“anchor in area X,” “scan with radar,” and “return to base.”  The “transit to area X” task 

might be subdivided yet again into executable subtasks “take off,” “climb to transit 

altitude X,” and “follow route to area X entry point.” 

A hierarchical-control mission is specified as a series of complex tasks or 

prioritized goals.  Planning algorithms are applied at each level to generate subtasks for 

the next lower level.  Planning is typically only required for the next task to be executed 
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at each level.  High-level plans, therefore, are more general in nature and cover longer 

periods of time while low-level plans are increasingly more detailed but are expected to 

complete in the relatively near future.  As a result, effort is not expended in the 

generation of detailed long-term plans that have a high probability of becoming obsolete 

before they are fully executed (Stentz, 04). 

 
Figure 2.2.   A Typical Hierarchical Architecture for Autonomous Vehicle Control 

 
Among the most capable multi-layer control architectures currently available is 

the Draper Laboratory’s All-Domain Execution and Planning Technology (ADEPT) 

(Ricard and Kolitz, 02).  The result of ten years of evolution of autonomy projects such as 

the Mission Planning and Plan Management system of (Hall and Farrell, 94), ADEPT 

uses increasingly detailed activities that are drawn from an activity library appropriate to 

the hierarchical level.  Each activity consists of an activity model (i.e., a description of 

the ultimate effect of the activity) and an activity planner that describes how the activity 

is to be decomposed into activities appropriate for the next lower level (Hall and Farrell, 

94).  Path planning algorithms include A*, Focused Dynamic A* (D*), and Time-

Bounded A* (T*) search implementations while other activities utilize algorithms more 

suited to their specific requirements (Ricard and Kolitz, 02).  In all cases, monitoring and 

diagnosis modules at each layer direct planning and execution based on mission 

requirements and evolving situational awareness. 

Hierarchical control has the advantage of being well suited for complex tasks—

the types of tasks that can be decomposed into subtasks in a fairly straightforward 

manner.  Numerous planning algorithms have been specifically developed to deal with 

this sort of problem and can be applied arbitrarily in generating subtasks at various levels.  

Additionally, recent experimentation with hierarchical control and planning for multi-
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vehicle systems provides an indication that the paradigm is well-suited not only for 

single-vehicle control, but is potentially applicable in the domain of multi-vehicle control 

as well (Yang, et al, 05).  The most significant disadvantage is potentially slow, 

intermittent, or inappropriate response to a dynamic or uncertain environments due to 

planning and replanning requirements.  Also a factor is the dependence of successful plan 

execution on the accuracy of the vehicle’s world model at the time the plan was 

developed.  (Stentz, 04)(Russell and Norvig, 03) 

On a superficial level, the application of a common data model to the domain of 

hierarchical control is relatively simple.  It consists of mappings between the common 

data model and potential tasks and subtasks coupled with automated translations between 

the vehicle-specific hierarchical commands and the common data model.  A more 

interesting application of the ontology to hierarchical control arises from its potential to 

represent both declarative and task-level missions along with the ability to automatically 

convert between the two.  As previously noted, the conversion from data-model-

compliant declarative goals to task-level missions closely mirrors a hierarchical control 

architecture’s generation of detailed plans from high-level tasks.  The obvious conclusion 

is that a single data model or ontology can be used as the basis for implementation of a 

hierarchical control architecture.  As alluded to previously, this ontology-based control 

architecture can provide a simple means of extending the capabilities of simple scripted 

control architectures by adding more robust high-level control. 

3. Behavioral Control 
A third method of autonomous vehicle control is behavioral control.  Vehicles 

using this form of control activate predefined behaviors as required to achieve the goals 

of the mission.  Available behaviors for a vehicle might include “maintain heading,” 

“avoid obstacle,” or “track target.”  In most cases, multiple behaviors can be active 

simultaneously.  For instance an UUV might have one behavior controlling heading, 

another behavior controlling depth, and a third behavior controlling sensors.  Many 

behaviors, on the other hand, are mutually exclusive and cannot be active at the same 

time—“maintain heading” and “avoid obstacle,” for example, are in all likelihood 

incompatible.  It is the responsibility of the top level of the vehicle control architecture to 

ensure that mutually exclusive behaviors are not activated simultaneously.  (Stentz, 04) 
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In its simplest form, behavioral control mirrors the control paradigm of a purely 

reactive agent.  Consider, for example, a homing torpedo—an autonomous underwater 

vehicle (AUV) with a  simple unchanging goal:  impact a target.  Immediately following 

launch, active behaviors might consist of “dive,” “power up computer and sensors,” and 

“steer to search bearing.”  Upon reaching search depth and heading with computer and 

sensors powered up, “maintain depth,” “steer through search pattern,” and “search for 

target” behaviors might become active.  Finally, upon target detection, final-phase 

behaviors such as “attain target depth,” “steer towards impact point,” and “track target 

with sensor” can be activated and will remain active until impact. 

In more complex systems, behaviors are activated and deactivated based on 

arbitrary and possibly dynamic run-time conditions rather than a predetermined static 

mission script.  In these systems, a more robust top-level controller is required to activate 

and deactivate the appropriate behaviors to successfully complete a complex mission in a 

dynamic environment.  One such system is the Distributed Architecture for Mobile 

Navigation (DAMN) (Stentz, 04).  The top-level controller of this system utilizes an 

arbiter to determine vehicle controller commands based on the currently perceived 

situation, the requirements of the mission, and the potential control requirements of the 

various competing behaviors.  As the example heading-behavior arbiter depicted in 

Figure 2.3 indicates, the DAMN arbiter examines the control command called for by all 

behaviors potentially controlling a specific parameter and then determines the most 

advantageous behavior to activate for the current situation.  That action may be the one 

that progresses most directly towards the highest priority goal, minimizes the near-term 

risk to the vehicle, or some combination of these or other desirable outcomes. 

Another example of a robust behavior control-based system is The Pennsylvania 

State University Applied Research Laboratory’s Intelligent Control architecture.  This 

system uses a perception module that fuses and interprets sensor data in order to maintain 

situational awareness and build a comprehensive world view that includes all perceived 

objects and their classifications.  Behaviors are contained within a response module that 

assumes mission management and planning responsibilities.  A mission manager in the 

response module determines the appropriate behaviors to activate and replans as required 

when the world model changes or received communications modify the mission 
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requirements.  Active behaviors control actuators, sensors and outbound communications.  

A graphical depiction of the relationship between the perception and response modules is 

provided in Figure 2.4.  (Lewis and Weiss, 04) 

 
Figure 2.3.   A Distributed Architecture for Mobile Navigation (DAMN) Arbiter for 

Autonomous Vehicle Heading Control Behaviors (After:  Rosenblatt, 97) 

 

 
Figure 2.4.   Behavioral Autonomous Vehicle Control as Implemented in the 

Pennsylvania State University Applied Research Laboratory Intelligent 
Control Architecture (After:  Lewis and Weiss, 04) 
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The most significant advantage of behavioral control is execution speed.  Since 

the system relies only on the current vehicle state and operates without regard to past 

occurrences or future predictions, planning requirements are minimal.  Whereas planning 

algorithm computations generally run in polynomial time, world-state evaluation and 

behavior selection can be executed in near-constant time.  In addition, behavioral control 

does not rely on any a priori world knowledge—another byproduct of the historical 

independence.  On the down side, behavioral control is not nearly as conducive to 

complex tasks as hierarchical control.  While the specific intent of a planning algorithm is 

to decompose a complex task into a series of relatively simple steps, it is far more 

difficult to design behaviors, or more specifically behavior activation criteria, to support 

tasks of this sort (Stentz, 04).  Nevertheless, the ability of vehicles utilizing behavioral 

control to operate as part of a multi-vehicle system to accomplish complex tasking has 

been demonstrated and behavior-based control remains an area of interest for 

autonomous vehicle researchers (Lewis and Weiss, 04). 

The observation that behavior initiation for vehicles utilizing behavioral control is 

not governed by a script might make it appear that the proposed common data model is of 

limited applicability to these vehicles.  However, while the use of task-level behavior 

scripts is not, on its face, relevant to behaviorally controlled vehicles, a common thread 

among the more robust behavioral control vehicles is the requirement to specify what a 

mission is intended to accomplish.  It is primarily in this area that the proposed common 

data model is potentially useful—by providing a tasking specification means for vehicles 

utilizing any control paradigm, the model serves as a bridge between vehicles regardless 

of the control paradigm utilized during both planning and execution phases of the 

mission. 

4. Hybrid Control 
A final autonomous vehicle control methodology that attempts to capture the 

advantages of the previously discussed paradigms while mitigating their disadvantages is 

hybrid control.  Whereas hierarchical control is inherently deliberative in nature and 

behavioral control is inherently reactive, the hybrid control paradigm attempts to combine 

the best of both by implementing hierarchical control at higher levels and behavioral 

control at the lowest levels (Russell and Norvig, 03)(Stentz, 04).  Higher levels, therefore, 
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contain global plans consisting of complex tasks and subtasks, while lower levels utilize 

behaviors that are activated as required for the ordered completion of the ordered 

subtasks. 

Among hybrid architectures, implementations along the lines of the three-layer 

architecture depicted in Figure 2.5 are the most common (Russell and Norvig, 03).  In the 

most general version of this model, the highest, or deliberative, layer transforms a 

mission comprised of complex tasks into subtasks (e.g., a series of waypoints) that are 

sent to an intermediate layer (referred to in the literature as the executive layer) for 

sequencing and execution.  In some cases, the deliberative layer may have multiple 

sublayers that divide the complex tasks into increasingly simplified subtasks until a plan 

of sufficient detail for executive layer processing is obtained.  The executive layer is 

responsible for activating and deactivating behaviors at the reactive layer in order to 

execute deliberative layer directives.  Additionally, the executive layer is responsible for 

interpreting sensor data to maintain a world model that is utilized by the deliberative 

layer during planning.  The reactive layer interfaces with the vehicle’s control hardware 

and implements behaviors that react to the local environment. 

 
Figure 2.5.   A Three-Level Hybrid Architecture for Autonomous Vehicle Control 

 
The most significant advantage of a hybrid architecture is the ability to plan for 

and execute complex tasks in a dynamic and uncertain environment without sacrificing 
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the low-level efficiency—deliberative and executive layer computations can proceed at 

an appropriately slow pace while reactive layer behaviors provide rapid, real-time 

response to the external environment.  In this respect, hybrid control achieves a dual goal 

of capturing the advantages and eliminating the disadvantages of both hierarchical and 

behavioral control.  This is a significant enough accomplishment that many control 

architectures initially implemented in a purely hierarchical manner have evolved into 

hybrid architectures (Albus, 96)(Albus, 98).  A hybrid control architecture does, however, 

retain hierarchical control’s dependence on the accuracy of the world model upon which 

deliberative planning relies.  (Stentz, 04)(Russell and Norvig, 03) 

A common autonomous vehicle data model can be applied to the domain of 

hybrid control in essentially the same way that is applied to hierarchical control.  At its 

most basic level, this consists of mappings and conversions between the ontology-

compliant data format and the hybrid control complex tasks and subtasks.  This similarity 

stands to reason since hybrid control does not differ substantially from hierarchical 

control above the executive layer.  Also applicable is the use of the data model as an 

integral part of a multi-layer hybrid control architecture.  In fact, the exemplar explored 

in this research utilizes the exemplar data model in support of a hybrid control 

architecture—specifically as the interface mechanism between the levels of the RBM. 

5. The Rational Behavior Model (RBM) 
As stated previously, the RBM is a three-layer hybrid architecture.  First proposed 

in (Kwak, et al., 92) and formalized in (Byrnes, 93), the RBM structure is designed to 

roughly model the command hierarchy of a naval vessel as depicted in Figure 2.6.  The 

top RBM layer, referred to as the Strategic level, correlates to the vessel’s commanding 

officer and is responsible for high-level decision making and mission flow.  The middle 

layer, the Tactical level, correlates to officer watchstanders (e.g., officer of the deck, 

navigator, etc.) and is responsible for executing Strategic level directives and monitoring 

vehicle systems.  Finally, the lowest layer, the Execution level, has little decision-making 

responsibility but provides the interface with the vehicle’s control and sensor systems.  

This level of the architecture correlates to the junior members of the naval vessel watch 

team. 
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At the Strategic level, vehicle tasking is expressed as a set of inference rules that 

describe the goals of the mission and define a search space that breaks the goals into 

subgoals that directly equate to vehicle behaviors that are issued as orders to the Tacitcal 

level.  The RBM Strategic level, therefore, can be viewed as a theorem prover that 

executes the specified mission through side effects of the inference process (Byrnes, 93).    

 
Figure 2.6.   The Rational Behavior Model (RBM) Architecture that uses the Control 

Paradigm of Naval Vessels as its Basis (After:  Byrnes, 93) 

 
Alternatively, the Strategic level can be viewed as a finite state machine where 

individual goals correspond to states and transitions are executed upon success or failure 

of the corresponding goal.  This second view closely matches the declarative mission 

specification of the exemplar data model developed in the conduct of this research.  

Similarly, behavior orders issued to the Tactical level equate to data model task-level 

behaviors.  These similarities are exploited in the extension and implementation of the 

RBM described in Chapter VII. 

C. SYSTEM AND PLATFORM-INDEPENDENT LANGUAGES 

1. Common Control Language (CCL) 
CCL is a research project by the Naval Undersea Warfare Center, University of 

Massachusetts, and the Autonomous Undersea Systems Institute that is similar to the 

common data model proposed by this research in scope and intent but differs 

significantly in implementation.  As with the common autonomous vehicle data model 

developed here, the intent of CCL is to provide a command language suitable for the 
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control of arbitrary vehicles or systems of heterogeneous vehicles (although CCL is 

intended only for UUVs).  Also like the common data model, CCL constructs are 

available both for the development of vehicle tasking prior to launch as well as for in-

mission inter-vehicle communications. 

Building upon previous efforts to develop a common UUV command and control 

language (Blidberg, 94)(Turner and Chappell, 95)(Buzzell, 04)(Komerska, et al., 99-1), 

CCL is based on predefined behaviors, each of which fall into one of nine classes (Figure 

2.7).  A CCL program defines a mission by specifying tasks.  Each task is specified with 

initialization parameters (points, parameters and initial values, authorized behaviors, and 

available operators), a description of how and when the task is to be updated, a definition 

of the task cost, and a goal definition for the task.  Each task can be defined in terms of 

subtasks or individual behaviors.  A single mission level task statement is used as the top-

level mission definition.  Since the available behaviors upon which all tasks are 

ultimately based are vehicle independent, CCL missions can be defined for arbitrary 

UUVs (Duarte, et al., 05). 

 
Figure 2.7.   Common Control Language (CCL) Behavior Classes and Example Instances 

(From:  Duarte, et al., 04) 

 
Defining the mission, however, is only half the problem—it still has to be able to 

run on the vehicle for which it is intended.  CCL accomplishes this through the on-



 

26  

vehicle installation of the CCL hybrid controller.  This controller consists of a CCL 

interpreter and an embedded planner and is used to generate vehicle-specific controller 

commands.  The planner, based on a form of process algebra referred to as cost calculus 

($-calculus) that is specifically concerned with representing and manipulating concurrent 

systems in a resource-constrained environment, uses kΩ-optimization to develop 

appropriate behavior sequences (Eberbach, 01)(Eberbach, 05).  A characteristic of kΩ-

optimization that makes it attractive for on-vehicle utilization is that it guarantees at least 

a suboptimal solution regardless of allotted computation time (Duarte, 04). 

The CCL controller runs in the Naval Undersea Warfare Center’s Distributed 

Control Environment—a behavior-based software environment based on the University 

of Southern California’s Ayllu system (Werger, 00) for concurrent systems that uses a 

shared memory structure.  The CCL hybrid controller also runs within the Distributed 

Control Environment and utilizes the behavior specifications and an updated world model 

(based on sensor data and potential input from other vehicles or human operators) to 

develop plans that accomplish the tasking (Duarte, et al., 05).  The current plan is used to 

generate native controller commands that maneuver the vehicle and control its sensors as 

illustrated in Figure 2.8. 

 
Figure 2.8.   The CCL Runtime Environment (After:  Duarte, et al., 04) 
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Communication in CCL builds on (Turner and Chappell, 95) and the Foundation 

for Physical Agents (FIPA) Communicative Act Library Specification (FIPA, 02).  CCL 

messages fall into one of two categories:  request or inform.  Request messages are used 

to issue commands and query other vehicles for information.  Inform messages are used 

to propagate data and knowledge through the system.  Messages include header and 

scheduling information as well as a variable-length body and are designed so that a parser 

does not need to backtrack.  Messages can be used to transmit tasks, behavior definitions 

or status information from one vehicle to another.  (Duarte, et al., 05) 

As with programs written in other languages, UUV missions defined with CCL 

can become quite complex which can make them difficult to read, author and debug.  

This implies that a graphical user interface for the development and testing of CCL 

missions might be advantageous and two such graphical user interfaces are currently in 

development.  The first is being developed in conjunction with CCL itself and is designed 

to generate missions for single vehicles (Duarte, et al., 05).  The second, the Autonomous 

Systems Monitoring and Control system is designed for the development of multi-vehicle 

missions (Mupparapu, et al., 04).  Additionally, the Autonomous Systems Monitoring and 

Control system provides facilities for communicating with vehicles and monitoring 

mission progress at run time. 

The most significant advantage to CCL is its inherent support for arbitrary UUVs.  

The predefined behaviors through which arbitrary vehicle support is achieved are 

conceptually similar to the task-level behaviors of the exemplar data model developed in 

the course of this research.  Additionally, communication and coordination is simplified 

by the fact that all vehicles utilize the same CCL controller.  The main disadvantage is 

the requirement to install the CCL controller on each vehicle.  On-vehicle CCL 

implementation is simplified through the vehicle-specific implementation of CCL 

behaviors (i.e., software modules that convert CCL behaviors into vehicle-specific 

control orders) and a “bridge” behavior that provides an interface between the CCL 

controller and the vehicle’s existing control software (Duarte, et al., 05). 

2. Compact Control Language (C2L) 

C2L is a project of the Woods Hole Oceanographic Institution Oceanographic 

Systems Laboratory that, like CCL and AVCL, is intended to facilitate dissimilar vehicle 
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interoperability.  Its focus, however, differs in that it is concerned primarily with 

communications—its purpose is to serve as a language between UUVs whose 

communications paths are generally limited to low-bandwidth acoustic modems.  C2L is 

currently the basis for acoustic communication of the Hydroid REMUS UUVs, but is 

intended to be generic enough to apply to arbitrary UUVs.  C2L is presently mandated as 

the acoustic communications protocol to be used among UUVs within the Office of 

Naval Research Very Shallow Water / Surf Zone Mine Countermeasure program (Duarte, 

et al., 05), and has been implemented on a number of swimming and crawling UUVs in 

addition to REMUS (Stokey, et al., 05). 

At the time of this writing, the current C2L specification consisted of 21 message 

types (Stokey, 05).  The message structure is designed around the capabilities of the 

Woods Hole Oceanographic Institution acoustic modem set (variants of which are 

commonly installed on many UUVs), so C2L message size is restricted to the 32-byte 

packets of the modems.  Since C2L is specifically intended for bandwidth-limited 

communications paths, an effort was made to capture a significant amount of information 

in the smallest message possible.  The 32 bytes of a C2L message packet can contain 

multiple submessages as shown graphically in Figure 2.9.  This is typically accomplished 

by using simple compression algorithms to on individual data elements.  Latitudes and 

longitudes, for instance, are represented with bytes to within several meters resolution 

(Stokey, et al., 05).  Packet size notwithstanding, C2L message length is not specifically 

limited to 32 bytes, but while the potential exists for multiple-packet messages, at present 

none have been implemented (Stokey, 04). 

Not surprisingly, C2L is capable of transmitting vehicle status information along 

the lines of position and heading, environmental sensor information such as bathymetry 

and salinity, as well as short text or error messages.  Additionally, various command and 

control communications are available to allow run-time mission modification or the 

issuance of specific control commands (start, abort, etc.).  Finally, since substantial 

Woods Hole Oceanographic Institution UUV research has focused on the utilization of 

UUVs in mine countermeasure operations, C2L has predefined messages for the 

transmission of mine countermeasure data and reports.  Specifically, C2L defines 

messages that encapsulate Computer-Aided Detection / Computer-Aided Classification 
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data.  The Computer-Aided Detection / Computer-Aided Classification system is used for 

automatic detection and classification of mine-like objects based on raw sonar data.  It 

can be installed on a UUV to provide for in-mission classification and decision making or 

utilized for post-processing of UUV data files (Dobeck, et al., 04). 

 
Figure 2.9.   A Compact Control Language (C2L) Message Containing Computer Aided 

Detection / Computer Aided Classification Mine Countermeasures Data 
(After:  Stokey, 04) 

 
A potential disadvantage of C2L is that vehicles must be programmed to utilize it.  

This inhibits the ability of C2L-capable vehicles to interoperate with vehicles that are not 

C2L-capable.  Additionally, a number of messages in the C2L vocabulary are tailored 

around the capabilities of specific vehicles and the data that these vehicles collect.  The 

Redirect message, for instance, closely matches the REMUS command directing a lawn-

mower-like coverage pattern over a specified survey area.  Developers interested in 

implementing C2L for specific vehicles are required to coordinate with the C2L 

developers to extend the message set (changes to existing messages are not allowed) to 

support their specific vehicle requirements (Stokey 05).  In order to facilitate the 

operations of heterogeneous vehicle systems, the C2L specification does not allow 

“partial compliance”— vehicles that can interpret the entire C2L message set are 

compliant and vehicles that cannot are noncompliant.  It is also assumed that if any 

participants in a particular operation are using extensions to the existing message set, all 

participating vehicles will be able to interpret these messages as well (Stokey, 05). 
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While theoretically suitable for arbitrary autonomous vehicles, these constraints 

mean that C2L is not inherently applicable outside the set of vehicles that have 

implemented it.  Nevertheless, as with vehicle-specific data formats, the C2L semantics 

can be captured by a common data model and previously discussed methods of 

automated translation can be utilized to extend the compatibility of C2L beyond the set of 

implementing vehicles. 

3. Joint Architecture for Unmanned Systems (JAUS) 

a. JAUS Overview 
Although not a platform-independent language along the lines of CCL and 

C2L, JAUS provides another example of relevant current research.  Acknowledging the 

advantages of a standard open architecture in the cost-effective development and 

procurement of unmanned vehicles for military applications, the Joint Robotics Program 

has listed the definition and evolution of such a system as a priority in its Unmanned 

Vehicle Master Plan and also endorsed JAUS toward this end (JRP, 04).  JAUS provides 

a framework for the logical organization of vehicle modules and also for how they 

interact.  A JAUS system includes both the system’s hardware and software. 

Among the stated JAUS objectives are support for all classes of unmanned 

vehicles and interoperable unmanned systems—two design objectives which this research 

attempts to address (JAUS, 04-1).  Also similar to those of the common autonomous 

vehicle data model are the philosophical underpinnings of JAUS:  platform, mission, 

computer resource, technology, and operator-use independence (JAUS, 04-1). 

b. JAUS System Topology 
A JAUS topology is defined in terms of a system, subsystems, nodes, 

components, and component instances hierarchically arranged as depicted in Figure 2.10.  

A system is a logical grouping of one or more subsystems that gain a cooperative 

advantage by being grouped together (JAUS, 04-2).  A JAUS system, for example, might 

consist of an operator control unit for an unmanned system or a mission planning 

application for an autonomous system, one or more vehicle subsystems, and possibly 

support subsystems (e.g., signal repeaters). 

Each JAUS subsystem is a distinct unit that operates as an independent 

entity within the framework of the system.  An individual vehicle is considered a 
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subsystem within a JAUS system so it is this level of the topology with which this work 

is primarily concerned.  JAUS messages are the sole means of communication between 

subsystems. 

 
Figure 2.10.   Joint Architecture for Unmanned Systems (JAUS) Topology for Unmanned 

System Design and Implementation (From:  JAUS, 04-2) 
 

A JAUS node contains hardware and software necessary to support a 

single well-defined capability.  In general, the division of a subsystem into nodes is up to 

the designer, but an autonomous vehicle subsystem divides logically into nodes such as 

master controller, navigator, and vision processor.  Each node is logically self contained 

and includes both the hardware and software required to implement the intended 

capability.  As with subsystems, nodes communicate exclusively via JAUS messages. 

Components are the lowest level of the JAUS topology and comprise the 

software building blocks of nodes, subsystems and systems.  Typically implemented as 

an executable task or process, a component is a software unit that provides one or more 

services.  Unlike the functionality and organization of subsystems and nodes, which are 

determined by the system designer, the JAUS Reference Architecture defines a fixed set 

of components that can be used arbitrarily within nodes (including multiple instances of a 

component) to achieve the desired functionality (JAUS, 04-2). 

c. JAUS Components 
While the component-level architecture of vehicle systems is somewhat 

outside the scope of this research, JAUS components and JAUS communications are 

closely enough related to make a brief discussion of components worthwhile.  As stated 

previously, a component is intended to provide a single cohesive function.  Additionally, 
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components are intended to be self contained in order to minimize communications 

bandwidth requirements (JAUS, 04-2).  Components are divided into five functional 

groupings:  command and control, communications, platform, manipulator, and 

environmental sensor.  A JAUS component specification includes a unique component 

identification and a functional description (Table 2.1).  The component’s grouping 

determines which JAUS messages a component must respond to and in what manner. 

Component ID Group Function 

System Commander 40 Command and 
Control Responsible for overall system control 

Subsystem Commander 32 Command and 
Control Responsible for overall subsystem control 

Communicator 35 Communication Responsible for all communications into or out of a 
subsystem 

Global Pose Sensor 38 Platform Maintains the global six degree of freedom posture of 
the vehicle 

Local Pose Sensor 41 Platform Maintains a local coordinate system posture of the 
vehicle 

Velocity State Sensor 42 Platform Maintains vehicle linear and angular velocity 

Primitive Driver 33 Platform Controls vehicle motion without external reference 

Reflexive Driver 43 Platform Adds external reference (safety, obstacle avoidance, 
etc) to primitive driver control 

Global Vector Driver 34 Platform Controls linear and angular velocity relative to a world 
reference frame 

Local Vector Driver 44 Platform Controls linear and angular velocity relative to a fixed 
body reference frame 

Global Waypoint Driver 45 Platform Drives vehicle to a global reference frame waypoint 

Local Waypoint Driver 46 Platform Drives vehicle to a waypoint relative to the current 
vehicle posture 

Global Path Segment Driver 47 Platform Drives the vehicle along a Bezier spline defined in 
global coordinates 

Local Path Segment Driver 48 Platform Drives the vehicle along a Bezier spline defined in 
vehicle body coordinates 

Primitive Manipulator 49 Manipulator Controls an articulated manipulator 

Manipulator Joint Position Sensor 51 Manipulator Maintains manipulator rotational and prismatic joint 
position information 

Manipulator Joint Velocity Sensor 52 Manipulator Maintains manipulator rotational and prismatic joint 
velocity information 

Manipulator Joint Force / Torque 
Sensor 53 Manipulator Maintains manipulator rotational joint torque and 

prismatic joint force information 

Manipulator Joint Positions Driver 54 Manipulator Controls manipulator rotational and prismatic joint 
positioning 

Manipulator End Effector Pose 
Driver 55 Manipulator Controls the six degree of freedom posture of a 

manipulator end effector 

Manipulator Joint Velocities Driver 56 Manipulator Controls manipulator rotational and prismatic joint 
velocities 

Manipulator End-Effector Velocity 
State Driver 57 Manipulator Controls the linear and angular velocity of a 

manipulator end effector 
Manipulator Joint Move Driver 58 Manipulator Controls manipulator joints through a specified path 
Manipulator End-Effector Discrete 
Pose Driver 59 Manipulator Controls manipulator end effector through a specified 

path 

Visual Sensor 37 Environment 
Sensor Controls a vehicle visual sensor (camera, sonar, etc.) 

Range Sensor 50 Environment 
Sensor Controls a vehicle range sensor (sonar, laser, etc.) 

Table 2.1.   The Available JAUS Components for use in Implementing Unmanned 
Vehicle Functionality (After:  JAUS, 04-2) 
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The command and control component group is fairly self explanatory—

these components implement the higher-level logic required for mission planning and 

control of subsystems, nodes or components for which they are responsible.  Available 

command and control components are the System Commander and Subsystem 

Commander.  For obvious reasons, these components are allowed to exchange messages 

of any type with other components as required.  Since it is within these components that 

higher-level vehicle control is implemented, it is primarily here that the mission-

specification aspects of a common data model are most relevant.  It is worth noting that 

JAUS does not specify how a mission is to be represented or what type of control an 

autonomous vehicle is to utilize.  However, it appears that the platform, manipulator and 

environment sensor components are well-suited to task-level behaviors that have been 

converted to JAUS messages. 

The communications component group consists of a single Communicator 

component.  The role of this component is to provide the single point of communications 

access to a subsystem.  This implies that a JAUS-compliant communications-capable 

vehicle has a single Communicator component that manages all external data links and 

communications paths as indicated in Figure 2.11.  Subsystem-to-subsystem 

communication within a JAUS system is unmediated, with each subsystem’s 

Communicator component responsible for processing all received or transmitted 

messages appropriately.  As with command and control components, the Communicator 

component can exchange any JAUS message with other components as required, but will 

normally exchange messages only between other components of its own subsystem and 

Communicator components of other subsystems.  Upon message receipt, the 

communications component of a specific subsystem forwards the information to other 

components within the subsystem for action as required. 

The platform, manipulator and environment sensor components are 

ultimately responsible for implementing the low-level functionality of any JAUS-

compliant vehicle.  The available components are listed in Table 2.1 and must be 

implemented in accordance the JAUS Reference Architecture (JAUS, 04-2).  Because of 

the more limited scope of their functionality, components within these groups have more 
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limited communications functionality and are required to react in certain ways upon the 

receipt of certain messages pertaining to their functionality. 

 
Figure 2.11.   The JAUS Communicator Component Functionality at the Architecture’s 

Subsystem Level (From:  JAUS, 04-2) 
 

d. JAUS Messaging 
When discussing the compatibility of individual vehicles in the context of 

JAUS, the primary area of concern is messaging—inter-vehicle compatibility from a 

JAUS standpoint rests on messaging at the subsystem (i.e., vehicle) level and does not 

rely on JAUS compliance of the internal architectures at the node and component levels.  

That is, two vehicles are operationally compatible if they can exchange JAUS messages 

in accordance with the Reference Architecture regardless of whether or not their internal 

architectures are JAUS compliant.  For this reason, the most important aspect of aligning 

a common autonomous vehicle ontology or data model with JAUS is capture of the 

relevant messaging semantics.  If the data model can be aligned with JAUS, the methods 

previously discussed can be used to automatically translate between JAUS messages and 

other message formats to facilitate interoperability of JAUS compliant and non-JAUS 

compliant vehicles.  For this reason, a brief discussion of the format and content of JAUS 

messages is relevant. 

By necessity data formats for use in JAUS messages are explicitly defined 

(Table 2.2).  Additionally, the encoding of many vehicle characteristics is rigidly defined 

as well, however this does not lead to incompatibility with other systems or with a 
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common data model utilizing a different encoding.  For instance, platform orientation in 

JAUS is defined by Euler angle rotations about an earth-fixed reference frame (X north, 

Y east, Z down)—ψ radians about Z, θ radians about Y, and φ radians about X, however 

this is equivalent to identical rotations performed in reverse order about vehicle body 

fixed coordinates (X forward, Y right, Z down) and can be equivalently expressed using a 

quaternion or rotation matrix representations as well (McGhee, et al., 00). 

Data Type Size (in Bytes) Representation 

Byte 1 8 bit unsigned integer 
Short Integer 2 16 bit signed integer 
Integer 4 32 bit signed integer 
Long Integer 8 64 bit signed integer 
Unsigned Short Integer 2 16 bit unsigned integer 
Unsigned Integer 4 32 bit unsigned integer 
Unsigned Long Integer 8 64 bit unsigned integer 
Float 4 IEEE 32 bit floating point number 
Long Float 8 IEEE 64 bit floating point number 

Table 2.2.   The JAUS Numerical Data Types (After:  JAUS, 04-3) 

 
As with components, JAUS specifies a finite set of available messages and 

explicitly defines their format, content and meaning.   JAUS also provides a means of 

implementing user-defined messages for application-specific requirements.  Available 

messages have a unique two-byte command code that is included within the message 

header and fall into one of seven classes (as of version 3.2, JAUS messages are defined 

for the Command, Query and Inform classes).  Each message within a class also has a 

subgroup designation corresponding to the component group to which the message 

applies (or core if it applies to all component groups).  Messages that are applicable at the 

JAUS system level are listed in Tables 2.3 and 2.4. 

Each JAUS message has a 16-byte header arranged in 12 fields as shown 

in Figure 2.12.  Of these fields the version, service connection flag, experimental flag, 

data flag, and reserved fields are either fixed or not yet implemented in JAUS.  

Additionally, since the common data model is concerned with inter-vehicle (subsystem 

level) as opposed to intra-vehicle (node and component level) communications, the node, 
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component, and instance portions of the source and destination ID are fixed as well (1, 35 

and 1 respectively).  Finally, since the maximum length of 4080 for a single JAUS 

message is sufficient for currently envisioned common data model messages, the 

sequence number field can also be assumed to be fixed.  Of the fields that require 

consideration during conversion between the common data model and JAUS, the contents 

of the priority level, acknowledge / no-acknowledge, command code, source ID and 

destination ID fields are explicitly encapsulated by elements of the common data model 

and message size can be computed when the JAUS message is constructed.  Required and 

optional data corresponding to each command code is specified in (JAUS, 04-4) and is 

appended to the end of the JAUS message header. 

Message Code Subgroup Description 

Set Component Authority 0000h Core Sets the component authority relative to others in the 
system [0..255] 

Shutdown 0002h Core Shuts down the receiving component 

Standby 0003h Core Causes the component to suspend operation (if active) 

Resume 0004h Core Causes the component to resume operation (if 
suspended) 

Reset 0005h Core Causes the component to reinitialize 

Request Component Control 000Dh Core Sender is asserting authority over the receiver 

Release Component Control 000Eh Core Sender is releasing authority over the receiver 

Confirm Component Control 000Fh Core Sender accepts or refuses to grant requested control to 
receiver 

Set Time 0011h Core Sets the current time and date 

Set Data Link Status 0200h Communications Enables or disables external data links 

Set Wrench Effort 0405h Platform Sets vehicle propulsive and / or braking effort for up to 
six degrees of freedom 

Set Global Vector 0407h Platform Sets the commanded vehicle speed, altitude, and 
posture 

Set Travel Speed 040Ah Platform Sets the commanded vehicle forward speed 

Set Global Waypoint 040Ch Platform Commands one or more waypoints (latitude, longitude 
and elevation) 

Set Joint Positions 0602h Manipulator Commands revolute and prismatic joint settings for a 
manipulator 

Set Joint Velocities 0603h Manipulator Commands revolute and prismatic joint velocities for a 
manipulator 

Set End Effector Pose 0605h Manipulator Commands a manipulator end effector position and 
orientation 

Set End Effector Velocity State 0606h Manipulator Commands a manipulator end effector angular and 
linear velocity 

Set Camera Pose 0801h Environment Commands an orientable sensor's posture for up to six 
degrees of freedom 

Table 2.3.   The JAUS Command Class Messages for Directing Unmanned Vehicle 
Actions (After:  JAUS, 04-2) 
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Query and Inform Messages Code Subgroup Description of Data Requested 
Query Component Authority 
Report Component Authority 

2001h 
4001h Core Component's currently assigned authority [0..255] 

Query Component Status      
Report Component Status 

2002h 
4002h Core Vehicle's current operational status 

Query Time                                      
Report Time 

2011h 
4011h Core Current timestamp 

Query Data Link Status          
Report Data Link Status 

2200h 
4200h Communications Status of external communications links 

Query Heartbeat Pulse            
Report Heartbeat Pulse 

2202h 
4202h Communications External communications check 

Query Platform Specifications  
Report Platform Specifications 

2400h 
4400h Platform Vehicle characteristics (max, min velocity, etc.) 

breakdown 
Query Global Pose                 
Report Global Pose 

2402h 
4402h Platform Vehicle's current latitude, longitude, and altitude 

Query Velocity State                   
Report Velocity State 

2404h 
4404h Platform Vehicle's current linear and angular velocity 

Query Wrench Effort              
Report Wrench Effort 

2405h 
4405h Platform Vehicle's current propulsive and braking level of effort 

in six degrees of freedom 
Query Global Vector              
Report Global Vector 

2407h 
4407h Platform Vehicle's current speed altitude and posture 

Query Travel Speed              
Report Travel Speed 

240Ah 
440Ah Platform Vehicle's current forward speed 

Query Global Waypoint          
Report Global Waypoint 

240Ch 
440Ch Platform Currently commanded waypoint list 

Query Manipulator Specifications    
Report Manipulator Specifications 

2600h 
4600h Platform 

Number of joints, link lengths, twist angles, offset or 
joint angles, min and max values for joints of a 
manipulator 

Query Joint Positions             
Report Joint Positions 

2602h 
4602h Manipulator Current values of the manipulator joints 

Query Joint Velocities              
Report Joint Velocities 

2603h 
4603h Manipulator Current velocities of the manipulator joints 

Query Tool Point                  
Report Tool Point 

2604h 
4604h Manipulator Current position and orientation of manipulator end 

effector 
Query Camera Pose                 
Report Camera Pose 

2800h 
4800h Environment Current sensor's posture in up to six degrees of 

freedom 
Query Relative Object Position 
Report Relative Object Position 

2802h 
4802h Environment Range bearing and elevation (relative to vehicle) of a 

sensor contact 
Query Image                           
Report Image 

2807h 
4807h Environment Raw sensor data 

Table 2.4.   The JAUS Query and Inform Class Messages for Requesting and Providing 
Unmanned Vehicle State Information (After:  JAUS, 04-2) 

 

 
Figure 2.12.   JAUS Message Header Layout and Field Descriptions (From:  JAUS, 04-3) 
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e. JAUS Summary 
The purpose of JAUS is to provide an open architecture for the efficient 

design and implementation of unmanned systems.  It defines a component-based 

message-passing architecture that system designers can utilize to build unmanned and 

autonomous systems with improved interoperability.  The portion of the JAUS Reference 

Architecture most relevant to the development of a common data model is the finite set of 

rigorously defined messages used to communicate between vehicles. 

Although the focus of this section has been on what JAUS provides, also 

noteworthy is what it does not provide.  Specifically, while JAUS specifies the format of 

individual commands (JAUS messages), it does not specify a format for a complete 

mission specification.  For unmanned systems, which to date make up the majority of 

fielded and planned JAUS systems, there is no requirement for a mission specification 

per se because the human operators directly control the system in accordance with their 

understanding of what the mission is supposed to accomplish.  In an autonomous vehicle 

system, on the other hand, the Subsystem Commander component manages mission 

progress with little or no human intervention.  Individual commands, therefore, are likely 

insufficient unless organized into a complete script.  Additionally, since the JAUS 

message set does not contain messages capable of commanding behaviors any more 

robust than waypoint transit, JAUS is not inherently suitable for any autonomous vehicle 

utilizing behavioral, hierarchical or hybrid control. 

4. Joint Command Control and Communications Information Exchange 
Data Model (JC3IEDM) 

A conceptually broader common data model is the  Multilateral Interoperability 

Programme’s JC3IEDM.  The Multilateral Interoperability Programme, currently a 

voluntary collaboration composed of 26 nations, North Atlantic Treaty Organization Data 

Administration Group, and Allied Command Transformation,  is developing information 

standards, processes and protocols necessary for international interoperability of 

command and control information systems (MIP, 03-2).  The centerpiece of Multilateral 

Interoperability Programme efforts to date is the JC3IEDM which defines standard 

elements of information that are passed between systems.  Although the Multilateral 

Interoperability Programme goals are significantly broader in scope than those of a 
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common autonomous vehicle data model, noteworthy similarities exist.  Specifically, 

both attempt to facilitate interoperability of dissimilar systems through data 

standardization.  Further, much information upon which command and control systems 

rely closely mirrors that utilized by autonomous vehicles in both military and non-

military settings.  In particular, the purpose of declarative mission definition using the 

common autonomous vehicle data model is to specify the vehicle that is to be tasked, 

where it is to operate and what it is expected to do (and not do)—concepts that are 

rigorously captured by JC3IEDM.  Inter-vehicle communications also deals with who, 

what and where concepts that are central to JC3IEDM, particularly in event and contact 

reporting.  A potential conclusion to be drawn from this data similarity is that JC3IEDM 

compatibility might be a desirable characteristic in a common autonomous vehicle data 

model since it leverages the rigor of the existing data model and provides compatibility 

with current and planned command and control systems. 

As stated previously JC3IEDM is specifically designed to encapsulate data that is 

transferred between command and control systems.  Unlike JAUS, which explicitly 

defines its entire messaging protocol, JC3IEDM is built around the organization of 

essentially arbitrary data.  JC3IEDM defines a relational data model wherein command 

and control information is expressed in terms of entities and their relationships.  The 

model minimizes the ambiguity inherent in free form text by providing a fixed set of 

enumerations for many data fields. 

JC3IEDM can be described at three levels of abstraction.  The conceptual data 

model (with which this section is concerned) represents generalized concepts such as 

actions, organizations and locations (MIP, 03-2).  Increasing levels of detail are provided 

by the logical data model which is concerned with entity attributes and the structure of 

relationships and the physical data model which deals with the specific implementation of 

compliant systems (MIP, 03-1). 

In JC3IEDM entities are characterized as both object-type and object-item.  An 

object-type, as the name implies, is a generalized concept denoting a class of objects—a 

Predator UAV is an example of an object-type entity.  An object-item, on the other hand, 

is a specific instance of an object-type, Predator UAV bureau number 165275 for 
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example.  Object-types and object-items can be subdivided into the five sub-entities 

shown in Figure 2.13.  Each of these is further divided at least one more time into entities 

such as aircraft-type (under material-type) or airfield (under facility).  Objects can be 

assigned relationships to other objects along the lines of belongs to, uses or is constrained 

by via the object-type-establishment and object-item-association entities.  Additionally, 

each object can be assigned capabilities and status as required. 

 
Figure 2.13.   A Diagram of the Joint Command Control and Communications 

Information Exchange Data Model (JC3IEDM) Conceptual Model Object 
and Object Type (From:  MIP, 03-2) 
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The basic entity for specifying a location in JC3IEDM is a point, which can be 

specified in either absolute terms (latitude and longitude) or relative to another point.  

The location portion of the JC3IEDM location entity structure (Figure 2.14) is more or 

less independent from other portions, the exception being a potential one-to-many 

relationship with object-item entities.  Points can be combined to define line segments, 

polygons and some surfaces, or utilized to implicitly define other surfaces and most 

volumes.  A point is also the basis for coordinate-system definition—particularly relevant 

to the development of a common autonomous vehicle data model since it must support 

vehicles whose position is maintained in relative terms as well as those utilizing absolute 

positions. 

 
Figure 2.14.   A Diagram of the JC3IEDM Location Conceptual Model (From:  MIP, 03-2) 

 

The portion of JC3IEDM that is most relevant to the development of a common 

autonomous vehicle data model is the methodology for specifying actions, since this is 

central to the specification of mission requirements in a manner appropriate for the 
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application of planning algorithms.  The basic structure of a JC3IEDM action is depicted 

in Figure 2.15.  Action-functional-association entities are utilized to specify sub-actions, 

define dependencies, specify alternative actions and similar relationships between 

actions.  Action-temporal-association entities specify temporal relationships between 

actions—when one action can be executed relative to another’s execution.  Action-

objective entities are utilized to specify what objects make up the objectives of the action. 

 
Figure 2.15.   A Diagram of the JC3IEDM Action Conceptual Model (From:  MIP, 03-2) 

 

This cursory examination of a selected subset of JC3IEDM demonstrates the 

inherent similarities between many aspects of JC3IEDM and a suitable common 

autonomous vehicle data model.  Subsequent chapters provide a more detailed 

description of how this similarity can be leveraged to support interoperability between 

autonomous vehicles and command and control systems. 

D. SUMMARY 
Various software architectures are currently utilized for autonomous vehicle 

control.  Examples include scripted control, hierarchical control, behavioral control, and 

hybrid control.  This research demonstrates how a common autonomous vehicle data 

model can be designed in such a way as to be compatible with any of these and can be 

used to improve the interoperability of vehicles with dissimilar control architectures by 

enabling mission definition in the same manner regardless of vehicle control architecture. 
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Interestingly, there have been substantial recent research efforts in various areas 

with goals similar to those of the common autonomous vehicle data model described 

here.  In particular CCL and C2L are being developed to support interoperability of 

dissimilar UUVs, JAUS is being proposed as a design and implementation standard for 

military unmanned vehicles, and JC3IEDM is attempting to standardize data relationships 

inherent in command and control systems.  A common autonomous vehicle data model 

both complements and is complemented by these evolving technologies.  Many 

characteristics of JAUS and JC3IEDM in particular, are central to the design of the 

exemplar data model and provide a mechanism through which systems utilizing these 

methodologies can operate effectively with systems that do not.
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III. EXTENSIBLE MARKUP LANGUAGE (XML) AND 
APPLICABLE XML TECHNOLOGIES 

A. INTRODUCTION—WHY XML? 
Existing vehicle-specific and general-purpose autonomous vehicle data formats 

and languages take a variety of forms.  Most languages and data formats designed for 

autonomous vehicle tasking are text based and can range in complexity from fixed-format 

number sequences where each number’s meaning is implied by its location in the 

sequence (e.g., NPS ARIES UUV waypoint lists) to more robust grammars along the 

lines of the scripting language of the Hydroid REMUS UUVs.  Autonomous vehicle data 

formats intended for use in communications are more likely to be implemented as bit-

mapped binary messages.  C2L and JAUS, for instance, are implemented using fixed and 

variable length binary data packets respectively.  Languages such as CCL which can be 

utilized for both communications and pre-mission tasking can potentially utilize either 

text or binary formats, however the exemplars discussed here are all text based. 

The data model implemented in the course of this research is fairly unique in that 

it is implemented with XML.  (Hawkins and Van Leuvan, 03) makes a strong case for the 

development and use of XML for autonomous vehicle tasking and interaction.  The 

authors base their argument primarily on XML’s platform independence and the ability to 

translate XML to vehicle-specific formats using XSLT.  (Neushul, 03) proposes the use 

of XML in a broader array of military command and control applications and implements 

a number of exemplars that rely heavily on XSLT to format data for disparate 

applications.  Included among the exemplars of that research is a proposed XML schema 

and XSLT-based approach to UAV cooperation. 

The proposed use of XML for the autonomous vehicle data model is not 

surprising given the increasing use of XML in a broad array of applications.  In fact, the 

availability of numerous XML APIs, utilities, and tools has facilitated the development of 

applications that completely insulate the end user the XML content itself.  The end-

product data transparency provided by these applications has an important implication for 

autonomous vehicle systems.  Specifically, XML enables the development of vehicle 

support systems that do not require any level of programming proficiency.  Systems 
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along the lines of the AUVW described in Appendix B, for instance, provide for the 

development and analysis of vehicle data by non-programmers and autonomous vehicle 

novices.  This capability is an important hurdle in the development of deployable 

military, commercial and scientific autonomous vehicle systems since it allows vehicle 

operation by experts in mission requirements and doctrine without the assistance of 

autonomous vehicle or programming experts. 

Ultimately, five specific aspects of XML that are directly or indirectly addressed 

in these references make a compelling case for its use in the development of AVCL—

human and machine readability of instance documents, explicit structure and content 

governance, document validation, automated conversion between AVCL and other data 

formats, and the existence of standards and utilities that facilitate the implementation and 

use of  AVCL.  The remainder of this chapter discusses each of these in more detail by 

providing an overview of XML and its use in the development of AVCL. 

B. XML OVERVIEW 
XML was developed under the auspices of the World Wide Web Consortium 

(W3C) to foster data exchange over the world wide web (the specific goals of the XML 

language design team are listed in Table 3.1).  A descendant of the Standard Generalized 

Markup Language (SGML), XML is a metamarkup language (i.e., a markup language 

without a fixed set of tags) that provides a rigorous means of adding descriptive 

information (i.e., meta data) to data in order to improve its readability and portability.  

XML allows application designers to define tags and attributes for the domain of interest 

that can be used to annotate data in a platform and application-independent manner.  This 

marked up data can then be parsed by standardized XML utilities for use in arbitrary 

applications.  Thus, XML itself is a language for writing other languages, especially data-

oriented languages. 

The obvious advantages offered by the possibility of platform-independent, self-

describing data have led to much hype and speculation concerning the ability of XML to 

revolutionize computing as we know it.  A bit of reality, however, is in order—XML is 

not a panacea.  It is important to recognize not only what XML is, but what it is not.  

XML, for instance, is not a programming language (although it can be used to implement 

programming languages).  Generally speaking, XML documents do not dictate actions, 
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they simply provide data to an application in a formal and predictable way.  It is up to the 

application designer to determine how to process the data.  XML is also not a network 

protocol, despite its ubiquitous use for data transfer on the internet.  Finally, XML is not 

a database and it is unlikely that it will replace more traditional database applications.  In 

short XML marks up data to make it more usable, but it does not inherently dictate what 

to do with it, where it came from, who to send it to, or how to store it.  If these limitations 

are kept in mind, however, XML provides a powerful data management tool that can be 

applied in a variety of ways.  (Harold and Means, 02) 

1.  XML shall be straightforwardly usable over the Internet. 
2.  XML shall support a wide variety of applications. 
3.  XML shall be compatible with SGML. 
4.  It shall be easy to write programs that process XML. 
5.  The number of optional features of XML is to be kept to the absolute minimum, ideally zero. 
6.  XML documents should be humanly legible and reasonably clear. 
7.  The design of XML shall be formal and concise. 
8.  XML documents shall be easy to create. 
9.  Terseness in XML markup is of minimal importance. 

Table 3.1.   Extensible Markup Language (XML) Design Goals (From:  W3C, 04) 

 
Although it was specifically designed to be the language of the web, the 

applicability of XML extends well beyond the confines of web-based applications.  

Given the desirability of cross-application data sharing, it is not surprising that XML has 

become an integral part of applications in domains too numerous to count.  In relation to 

this research, many of the XML design goals of Table 3.1 dovetail nicely with design 

goals of AVCL.  Specifically, the ability to support a variety of applications, ease of 

processing, human legibility, and ease of document generation are implicit requirements 

of a common autonomous vehicle data model.  Of the remaining design goals, only the 

explicit lack of any requirement for terseness seems contradictory to the goals of AVCL 

due to the potential impact of bandwidth limitations on communications between and 

with autonomous vehicles.  Even this pitfall can be dealt with through the use of binary 

or compressed XML as described later in this chapter. 

XML encodes data in the form of a tree.  Although the nature of the links between 

tree nodes is not explicitly mandated, the relationship implied by the structure of an XML 

document is composition; that is, the children of an XML element comprise all of the 
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sub-components of that element.  The XML fragment of Figure 3.1, for instance, 

illustrates a potential XML encoding of a UUV waypoint command.  The waypoint 

consists of a two-dimensional Cartesian point (which in turn consists of an X and a Y 

coordinate), a depth and a speed.  In this example the individual data values are expressed 

as element values of the tree’s leaf nodes.  Stemming from the concept of using XML to 

“mark up” the actual data, this pattern is the more traditional and most common method 

of expressing data in an XML document. 

 
Figure 3.1.   An Unmanned Underwater Vehicle (UUV) Waypoint Encoded in XML using 

Element Values to Capture Data Values 

 
Alternatively, data can be represented in an XML document using element 

attributes as depicted in Figure 3.2.  Traditionally, attributes have been used to provide 

information about an XML element or its contained value (e.g., in the example of    

Figure 3.1, attributes might be used to indicate units of measure) but not to express the 

actual data of interest.  In some applications, however, the XML is a part of rather than a 

description of the data (e.g., the XML fragments of Figures 3.1 and 3.2 are self-contained 

waypoint commands as opposed to descriptions of the contained numerical data).  In 

cases meeting this criteria, the use of attributes rather than element values to express data 

is appropriate.  XML Schema and the Extensible Three-Dimensional web graphics (X3D) 

language (ISO and IEC, 04) , for instance, are widely accepted XML languages that 

utilize this pattern. 

Ultimately, the decision of whether to use attributes or element values is 

somewhat arbitrary.  In the case of AVCL, the decision was based on the nature of the 

encoded data, readability, document size and ease of processing.  Additionally, XML data 
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binding and the heuristics by which data is bound to programming objects also weighed 

heavily in the decision to use attributes rather than element values. 

 
Figure 3.2.   An Alternative XML Encoding of a UUV Waypoint with Data Values 

Expressed using Attributes 

 

C. XML SCHEMA AND DOCUMENT VALIDATION 
Beyond requiring a document to be well formed (i.e., all elements require start 

and end tags and all child elements must start and end inside the parent’s start and end 

tags), the XML specification (W3C, 04-1) places very few constraints on the structure 

and content of an XML document.  Element and attribute names are completely arbitrary 

(so long as XML naming conventions are observed), the document’s content tree can be 

composed in any manner, elements can have any number of attributes, and elements and 

attributes can be assigned any numerical or string value.  While human operators might 

reasonably decipher unconstrained XML documents when the element and attribute 

names are well chosen, computational understanding of unconstrained XML is more 

difficult.  Advances in inference techniques and natural language understanding 

notwithstanding, the task of programmatic interpretation of XML documents can be 

greatly simplified if the document structure, content and semantics are known in advance. 

Specifically, it is desirable to explicitly predefine aspects of the XML documents with 

which the applications are to work (Duckett, et al., 01) including: 

• Elements that can appear in the document. 
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• Attributes that can appear in the document, to which elements they apply, 
and whether or not they are required. 

• Which elements are child elements and which elements are potential root 
elements. 

• The type, number and order of child elements for each parent element. 

• Data types and range restrictions for element and attribute values. 

• Default and fixed values for elements and attributes. 

In many cases an informal agreement on the XML structure and content is 

sufficient.  This is often true of XML that is intended for a single application or 

application family when broader use of the XML is not anticipated.  On the other hand, 

when wide use is anticipated, a published standard is often necessary.  XML Schema, 

XSLT, X3D and most ontology description languages fall into this category.  However 

most XML applications, including the data model investigated by this research, fall into a 

category somewhere between single-application and universal use.  AVCL is potentially 

applicable to a broad enough set of applications that an informal agreement on its content 

and structure is insufficient, but its scope is narrow enough that a formal specification is 

unduly cumbersome (it is worth noting that a formal specification is implicitly required 

for all of the non-XML vehicle-specific languages investigated as part of this research).  

In short, although a formal standard is not specifically required, the  application of a 

common data model to autonomous vehicle command and control does require a formal 

mechanism for ensuring data correctness (both syntactic and semantic) and document 

consistency. 

Two mechanisms are available for programmatic constraint of the content and 

structure of an XML document.  XML initially relied on Document Type Definitions 

(DTD).  The main components of a DTD are a set of production rules that define all of 

the permissible named elements and their content (i.e., child elements, text, etc.) and a set 

of attribute lists delineating the attributes for each named element.  Element production 

rules are similar in style and functionality to the production rules commonly used to 

define context-free grammars.  Attribute lists, on the other hand, consist of the name of 

the element to which the list applies and the attribute names, types and optional qualifiers 

(e.g., to indicate that the attribute is optional or has a fixed or default value).  (Hunter, et 

al., 04) 
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Despite the fact that DTDs are still in common use, there are a number of 

shortcomings that make them less than ideal for many XML applications (Duckett, et al., 

01).  Among the DTD shortcomings are a small set of available data types that do not 

map to data types of common programming languages and databases (e.g., floating point 

and integer types), lack of an XML-based syntax, and cumbersome mechanisms for re-

use of existing markup constructs.  Recognizing these shortcomings, the W3C developed 

and published a recommended standard for XML Schema—a more robust method of 

specifying the content and structure requirements of XML documents (W3C, 04-2)(W3C, 

04-3).  Unlike DTDs, a schema is composed with XML making it compatible with 

existing XML utilities.  Further, XML Schema is significantly more expressive than 

DTDs, albeit at the cost of increased complexity.  The increased power of XML Schema 

enables designers to utilize more advanced techniques in specifying a content model and 

also provides more control over document structure.  XML Schema directly addresses 

many of the shortcomings of DTDs and possesses a number of advantages that argue for 

its use in developing a common autonomous vehicle data model (Duckett, et al., 01): 

• Because schemas are written in XML syntax, they can be edited and 
processed using any tool intended for use with XML documents. 

• XML Schema directly supports most primitive data types used in common 
programming languages and databases. 

• XML Schema allows the definition of complex datatypes that extend or 
constrain existing types. 

• XML Schema contains class and type constructs that support re-use, 
extension, and inheritance of existing markup constructs.  

• XML Schema is more expressive than DTDs in constraining mixed 
content elements (i.e., elements that can potentially contain text). 

The advantages of XML Schema over DTDs are substantial enough that U.S. Department 

of the Navy has recently directed that the use of schemas vice DTDs is required for all 

forthcoming XML vocabularies and the conversion of existing DTD-constrained 

vocabularies to XML Schema (DON, 05). 

Once authored an XML schema or DTD is normally placed online at a well-

known location.  Alternatively, a schema or DTD can be maintained locally if the 

application does not have network access to an online copy as is often the case with 

autonomous vehicles.  Applications utilizing schema or DTD-constrained XML 
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documents automatically validate instance documents against the schema or DTD when 

they are loaded.  This capability is particularly important for applications that rely heavily 

on data correctness and for which the consequences of invalid data are potentially severe.  

autonomous vehicles clearly fall into this category—the time to recognize an invalid 

document (i.e., an incorrect mission definition or message) is when it is loaded, not after 

the vehicle has commenced a mission and the invalid data might result in operational 

errors or vehicle loss. 

Most applications and utilities that work with XML documents, including the 

utilities described in this chapter upon which the proposed common autonomous vehicle 

data model relies, automatically validate schema-governed documents as they are loaded.  

The use of XML Schema, therefore, makes documents essentially self validating.  

Coupled with the self-describing nature of a well-designed XML tag set, automatic 

validation provides strong incentive for its use as the design mechanism for the common 

autonomous vehicle data model.  AVCL, therefore, has been formally specified using 

XML Schema.  An overview of the data model design is provided in Chapter IV and a 

complete description of the implementation is provided in Appendix A. 

D. XML PARSING 

1. Introduction 
A number of mechanisms for parsing XML documents are available to XML 

application programmers, usually at no cost.  In general parsers are capable of processing 

arbitrary well-formed XML documents and do not rely on a schema or DTD.  For 

documents that are governed by a schema or DTD, parsers can validate documents as 

they are loaded depending on the parser’s settings.  Further, if an invalid document is 

encountered, a validating parser is generally capable of identifying the location and 

nature of invalid content.  Parsers do not, however, interpret the document, so it is 

incumbent upon the application programmer to process the parsed data appropriately. 

The most common XML parsers provide API bindings for the Document Object 

Model (DOM) and the Simple API for XML Parsing (SAX).  While neither was utilized 

extensively in the conduct of this research, they rate a brief description here for two 

reasons.  First, their widespread use and availability in most programming languages 

make DOM and SAX potential candidates for XML parsing in applications that use the 



 

53  

common autonomous vehicle data model, including vehicles themselves.  Second, DOM 

and SAX parsers form the underpinnings of many of the more advanced utilities upon 

which this research relies.  The mechanics of DOM and SAX, therefore, influence what 

these utilities can do and how they do it.  At the very least they provide straightforward 

examples of the two prevailing XML processing paradigms:  use of the parser to develop 

a parse tree that is retained in memory indefinitely, and use of the parser to trigger events 

as it traverses the document without retaining anything in memory beyond the potential 

side effects of the event handlers. 

2. The Document Object Model (DOM) 
The XML DOM is a specification published by the W3C that is currently on its 

third version, designated DOM Level 3 (W3C, 04-4).  Conceptually, DOM is fairly 

simple.  As a DOM parser traverses a document, it builds a content tree consisting of 

various types of nodes along the lines of the example shown in Figure 3.3.  The simple 

document of the example specifies a single UUV waypoint as a two-dimensional 

Cartesian coordinate and a commanded transit speed.  The document uses attributes to 

specify the waypoint command’s units of measure and element values to  specify the 

command parameters.  The document also contains a single comment.  The resultant 

DOM tree contains a single Document node (at the root), Element nodes for each 

document element, Text nodes for element values, Attribute nodes for each attribute, and 

a Comment node for the  example document’s lone comment.  It is worth noting that the 

value of a DOM element is maintained in a distinct object that is linked to the element, 

but is not a part of the element itself.  Also, attributes are associated with the elements to 

which they apply, but they are not actually part of the tree (i.e., they do not have a parent 

node and are not allowed to have child nodes).  Finally, comments are parsed and 

maintained in the parse tree along with the rest of the document. 

In reality XML DOM has significantly broader applicability than XML parsing—

it is actually a robust API for processing XML documents.  In the DOM API, all nodes 

inherit from a common base node type and therefore have common characteristics and 

methods.  Additionally, each node type has characteristics and methods specific to its 

subtype.  Since the entire DOM tree is loaded into memory when a document is parsed, 

the tree can be manipulated programmatically using the methods associated with the 
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various nodes.  New nodes can be created and added to the tree and existing nodes can be 

modified or deleted.  In fact, the entire DOM tree can be generated programmatically 

rather than loaded from an existing file.  The ability to programmatically generate and 

manipulate XML documents is perhaps DOM’s most significant asset. 

 
Figure 3.3.   A Graphical Depiction of an XML Document Object Model (DOM) Tree 

Corresponding to a Simple XML Document Specifying a UUV Waypoint 

 
The most significant disadvantages of DOM stem from the requirement to 

maintain the entire document in memory.  If documents are small, the associated 

overhead is usually acceptable.  However if documents are large, DOM can impose 

unacceptable memory and time requirements, particularly if only a small amount of 

information is to be extracted from a document or if multiple documents are to be loaded 

(Hunter, et al., 04) 

3. The Simple Application Programmer’s Interface (API) for XML 
Parsing (SAX) 

The most commonly utilized alternative to DOM is SAX.  Originally published as 

a Java API (but now available in a number of high-level programming languages), SAX 
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was not developed by and is not owned by any consortium, standards body or company.  

Nevertheless, SAX has evolved into a de facto standard upon which numerous 

applications rely (Hunter, et al., 04). 

SAX is an event-driven parser.  As the parser traverses a document, events 

(partially listed in Table 3.2) are triggered as certain constructs are encountered.  The 

most common event types are those that are triggered when the parser encounters the 

document beginning or end, element beginning or end tags, character data (i.e., the 

element value) and whitespace.  The parent application is responsible for reacting to 

events based on the type of event that was triggered and its associated parameters (e.g., 

the element name and attribute values associated with a startElement event).  Thus the 

application is free to process events that are relevant and ignore ones that are not. 

Event Description 

StartDocument Event to notify the application that the parser has read the start of the 
document. 

EndDocument Event to notify the application that the parser has read the end of the 
document. 

StartElement Event to notify the application that the parser has read an element start 
tag. 

EndElement 
Event to notify the application that the parser has read an element end 
tag (will be fired immediately after the startElement event for empty 
elements). 

Characters Event to notify the application that the parser has read a block of 
characters. 

IgnorableWhiteSpace Event to notify the application that the parser has read a block of 
whitespace that can probably be ignored. 

ProcessingInstruction Event to notify the application that the parser has read a processing 
instruction. 

StartPrefixMapping Event to notify the application that the parser has read an XML 
namespace declaration and that a new namespace prefix is in scope. 

EndPrefixMapping Event to notify the application that a namespace prefix is no longer in 
scope. 

Table 3.2.   A Subset of Available Event Types that are Triggered during Simple 
Application Programmer’s Interface (API) for XML (SAX) Parsing       

(After:  Hunter, et al., 04) 

 

Unlike DOM, once the parser completes its traversal, no document information is 

maintained beyond any side effects of event processing on the part of the parent 

application.  For this reason, SAX’s memory requirements are significantly reduced in 
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comparison to those of DOM.  Further, since the parser does not need to develop a 

potentially large content map as it traverses the document, SAX can be significantly 

faster than DOM (Means and Bodie, 02).  The main disadvantage to SAX is that it is only 

a parser and cannot be used to create or manipulate XML data. 

Neither SAX nor DOM, therefore, is universally applicable.  Each has advantages 

and disadvantages that are more suitable for some applications and less suitable for 

others.  In general, SAX is preferable for processing XML streams or documents that can 

be discarded once processed while DOM is preferable for processing XML documents 

that are to be modified and for programmatically generating XML content. 

E. XML DATA BINDING 
SAX and DOM are usually acceptable mechanisms for parsing, generating and 

manipulating fairly simple XML documents.  In fact they provide the only well-known 

API options for XML documents whose content is not constrained by a DTD or schema.  

However, for documents with well-defined but complex content models, such as the 

common autonomous vehicle data model proposed here, their use is cumbersome and 

error prone.  The generic nature of DOM and SAX mean that the application developer 

must keep the entire content model in mind and explicitly account for every possibility 

when writing software to process XML.  Further, neither SAX nor DOM has support for 

the data types with which developers are familiar.  All attribute and element values in 

SAX and DOM are strings, and their numerical or Boolean values must be parsed from 

the string accordingly.  Finally, SAX and DOM do not have the capability to detect even 

simple programming mistakes (e.g., a misspelled element name).  In many cases a 

runtime exception will be thrown (often in a completely different portion of the 

application than the actual mistake), but it is equally likely that the application will 

simply not work correctly in some instances.  This lack of error detection in SAX and 

DOM can make troubleshooting extremely difficult. 

Fortunately, a mechanism exists to more reliably and efficiently develop and 

process XML documents that are governed by a schema or DTD, namely XML data 

binding.  Stated simply, XML data binding is the use of a schema or DTD to 

automatically generate a customized API for the manipulation of compliant XML 

documents (McLaughlin, 01).  Schema-specific APIs allow the developer to work with 
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elements and attributes by name and data values by type.  They also provide well-named 

get and set accessor methods for the named elements and complex types.  Naming and 

typing conventions allow the compiler to detect many common errors (e.g., incorrect data 

typing, misspellings, etc.) when the application is compiled, making them much easier to 

trouble shoot.  Finally, schema-specific APIs can preclude the generation of invalid 

documents by enforcing compliance while the programming objects corresponding to a 

document are being constructed, manipulated in memory, or written out. 

As with other types of XML utilities, there are numerous data binders available 

that produce APIs in a variety of programming languages.  Output language and style 

differences aside, the end products of most XML data-binding utilities are similar.  

Application of a data-binding utility to a schema or DTD typically results in the 

generation of a marshaller, an unmarshaller, a validator and a content-specific API 

(McLaughlin, 02).  The marshaller and unmarshaller are respectively used to generate 

data-bound programming objects corresponding to XML documents and to serialize data-

bound objects back to XML.  The validator is used to check the validity of data-bound 

objects against the schema.  Finally, the content-specific API contains all of the methods 

required to access and manipulate data-bound objects.  Additionally, the content-specific 

API can be used to generate data-bound objects from scratch. 

In practice, XML data binding is used as graphically depicted in Figure 3.4.  The 

XML data binder is applied to the schema to generate the marshaller, unmarshaller, 

validator and content-specific API.  A client application uses these products to load valid 

XML documents into data-bound objects or generate them from scratch; access, 

manipulate and validate data-bound objects; and write data-bound objects out as XML.  

The application, therefore, never deals directly with the XML documents and 

manipulates data-bound objects using the content-specific API.  Additionally, neither the 

application nor the data binder products require runtime access to the schema or data 

binding utility.  This has the advantage of enabling vehicle applications and remote 

planners that may not have network access to the master schema to enforce document 

validity offline. 
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Figure 3.4.   A Graphical Depiction of the Interactions Between an XML Data Binding 

Utility, the XML Schema, the Binder Products, XML Documents and a 
Client Application 

 

XML data binders use common-sense heuristics to map XML Schema or DTD 

characteristics to classes in the output programming language.  These heuristics provide 

for consistent access to document elements and attributes.  A summary of some mapping 

heuristics of the data binding utility used in this research, Sun Microsystems’ Java 

Architecture for XML Binding (JAXB), are provided in Tables 3.3 through 3.5. 

Typical of most binders, JAXB maps XML Schema simple types to the closest 

matching available type of the output programming language (in this case Java).  In cases 

where the schema and output language types are not perfectly aligned, such as the JAXB 

mappings of XML unsigned integer types, the validator (and possibly the marshaller and 

unmarshaller) are typically be responsible for ensuring assigned value compliance with 

the schema.  Complex XML types normally map to classes or interfaces in the output 

language.  Naming of the produced classes generally correspond to the name of the 

element or complex type to which they correspond.  Similarly, accessor methods are 
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typically generated with names that correspond to the name of the attribute or element 

that they address.  In cases where an element can have multiple children of the same 

element type, a single accessor is normally generated that returns a linked list containing 

all of the relevant child elements.  List-manipulation methods of the output language are 

then used to access and manipulate the individual elements.  In programming languages 

like Java, where the contents of a linked list can be of any type, the validator is 

responsible for ensuring all elements in the list are of the appropriate type.  In other 

languages, however, the data-binding heuristics may be able to preclude list elements of 

the wrong type. 

Simple XML Types Java Type or Class Mapping 
byte Maps to byte. 
short Maps to short. 
int Maps to int. 
unsignedByte Maps to short.  Range validation is the responsibility of the validator. 
unsignedShort Maps to int.  Range validation is the responsibility of the validator. 
unsignedInt Maps to long.  Range validation is the responsibility of the validator. 
integer Maps to BigInteger. 
float Maps to float. 
double Maps to double. 
decimal Maps to BigDecimal. 
string Maps to String. 
Boolean Maps to boolean. 
Value-restricted 
simple type 

Maps to same Java primitive data type or class as the parent simple 
type.  Value validation is the responsibility of the validator. 

Table 3.3.   Java Architecture for XML Binding (JAXB) Heuristics for Mapping XML 
Schema Simple Types to Java Types (After:  Sun, 05) 

 

Complex XML Types Java Mapping 
Named element 
(empty) JAXB-defined AnyType class. 

Named element 
(simple content) Maps to the Java type of the simple content. 

Named element 
(complex content) JAXB-defined class with the same name as the element tag. 

Named complex type JAXB-defined class of the same name as the XML complex type. 
Complex content 
embedded in a parent 
type or element 

JAXB-defined subclass within the parent element or type class (e.g., 
ParentClass.SubClass). 

Named group No type mapping, handled with accessor method mappings. 
Table 3.4.   JAXB Heuristics for Mapping XML Schema Complex Types to Java Classes 

(After:  Sun, 05) 
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Content Type Accessor Description 
Element attributes 
(user-defined value) 

Get and set methods with the attribute name (e.g., setAttribute and 
getAttribute) and a parameter or return value of the attribute type. 

Element attributes 
(fixed value) 

Class variable with the attribute name (e.g. VARIABLE) and constant 
value. 

Element value 
(text or numerical) 

Get and set methods with the element name  (e.g., setElement and 
getElement) and parameter or return values of the element type. 

Child elements 
specified by name 
(single instance) 

Get and set methods with the child element name (e.g., getElement and 
setElement) and a parameter or return value of the child element type. 

Child elements 
specified by name 
(multiple instance) 

Get method with a return value of the Java List type.  List methods (e.g., 
get, add, remove, etc.) are used to access and modify elements.  The 
validator is responsible for ensuring the List contains only the 
appropriate elements. 

Child elements 
specified by group 
(single instance) 

Get and set methods for each allowable element as defined by the 
group.  The validator is responsible for ensuring the content complies 
with the group definition (e.g., choice, all, sequence, etc.). 

Child elements 
specified by group 
(multiple instance) 

Get method with a return value of the Java List type.  List methods are 
used to access and modify elements.  The validator is responsible for 
ensuring the List contains only appropriate elements and that the 
content complies with the group definition. 

Table 3.5.   JAXB Heuristics for Schema-Governed XML Element and Attribute 
Accessors (After:  Sun, 05) 

 

XML data binding is a powerful tool in the development of applications that 

process DTD or schema-governed XML data.  As such it is utilized extensively in this 

research for the implementation of mission planning systems and vehicle controllers as 

well as in the processing of various configuration files.  Additionally, it is an integral part 

of the translation mechanism for converting between data-model-compliant XML and 

existing autonomous vehicle data formats (both bit-mapped binary and non-XML text).  

The role of XML data binding in these conversions is discussed in detail in Chapter V. 

F. EXTENSIBLE STYLESHEET LANGUAGE FOR TRANSFORMATION 
(XSLT) 
Among the most useful tools available to XML applications is XSLT.  

Specifically defined for the purpose transforming one XML document into another 

(W3C, 01), XSLT is by no means limited to this application.  As demonstrated in 

(Neushul, 03), it can be used effectively to convert XML documents into virtually any 

text-based format containing the same information, or derivable information, as the 

original XML document.  Common uses for XSLT now include the generation of 
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documentation, graphics files (X3D, Scalable Vector Graphics, Virtual Reality Modeling 

Language, etc.) and even program source code.  Among web-based applications, XSLT 

has evolved into the de facto standard for the transfer of data between applications 

requiring different formats (Kay, 03), a process that is semantically identical to 

transforming an XML document constrained by an autonomous vehicle data model to a 

vehicle-specific format. 

Although XSLT has been proven to be Turing complete (Holman, 02), it has a 

number of characteristics that make it somewhat atypical among programming languages.  

These are clearly illustrated by a quick examination of a few of XSLT’s design goals 

(Tidwell, 01): 

• An XSLT stylesheet is itself an XML document.  This means that it can be 
processed by a variety of XML utilities and can even be transformed by 
another XSLT stylesheet. 

• XSLT is a pattern-matching language wherein templates define the desired 
output for matching source document constructs.  XSLT programs are 
declarative in style, as opposed to the imperative nature of Java, C, or C++ 
programs. 

• XSLT is designed to be free of side effects meaning that the execution of 
one template will not affect the execution of subsequent templates.  The 
most significant implication of this is that all variables are immutable—
once declared, the value cannot change. 

• XSLT has only two branching constructs:  if-then and choose-when-
otherwise.  Neither construct is capable of inadvertently invoking an 
infinite loop. 

• XSLT has no looping constructs.  Rather, it relies on iteration and 
recursion to accomplish repetitive tasks. 

From a mechanical standpoint, XSLT is actually composed of two specific 

components.  The first is the XSLT language itself which is comprised of 37 elements 

that provide all of XSLT’s functionality.  The second integral part of XSLT is the XML 

Path Language (XPath), an expression language that is used to define criteria for template 

matching and selecting nodes and values in an XML document.  XPath consists of 

functions that perform operations on or extract information about nodes, strings and 

numbers; arithmetic and logical operators; a mechanism for specifying a search axis  

(e.g., descendants, siblings, or ancestors of the current node); and a selection mechanism 

for specifying which nodes, attributes and values meet the criteria of an expression.  
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XPath expressions are found in XSLT stylesheets as attribute values of elements 

pertaining to template matching or expression evaluation. 

The execution of an XSLT stylesheet progresses sequentially until it ends or more 

commonly reaches an “apply-templates,” “call-templates” or “for-each” element.  At this 

point it evaluates any associated XPath expressions and perform the required actions on 

each selection of the expression.  Templates can be called by name but are more 

commonly invoked when the current node matches the template’s XPath criteria.  In 

instances where more than one template matches the current node, only the template 

corresponding to the most specific match is executed.  Templates can be invoked from 

within other templates with program flow ultimately dependent as much on the structure 

and content of the source document as on the XSLT stylesheet. 

Not surprisingly, the template-matching pattern of XSLT is tailor made for the 

transformation of XML documents.  XSLT’s use of immutable variables raises 

difficulties when it is used to transform AVCL documents because of a requirement to 

maintain up to date state information throughout the transformation.  However, this 

difficulty was overcome through the development of an XSLT pattern that uses template 

parameters to mimic the functionality of mutable variables.  In general, XSLT provides a 

powerful mechanism for converting data-model XML documents to various vehicle-

specific formats and receives significant attention in Chapter V. 

G. BINARY XML AND XML COMPRESSION 
While the preceding discussion focused primarily on aspects of XML that support 

its use in a common autonomous vehicle data model, XML documents have one 

characteristic that provides a strong counter argument.  As a rule the use of XML results 

in documents that are significantly larger than non-XML representations of the same 

data.  Using AVCL for UUV mission results files, for instance, results in files that are 

roughly two and one half times larger than space-delimited text files containing the same 

data.  When compared to binary data formats, the size increase is even more striking.  An 

XML-encoding of 21 common JAUS messages, for instance, results in up to a 60-fold 

increase in size over the standard binary encoding.  This document-size disparity is not 

surprising since terseness was specifically excluded as an XML design consideration.  In 
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the autonomous vehicle domain, the size of XML documents can impose potentially 

prohibitive bandwidth and processing requirements. 

In an effort to address the shortcomings of XML for certain applications, most 

notably the processing, memory, and bandwidth requirements imposed by XML’s 

intentional lack of terseness, the W3C recently established the XML Binary 

Characterization Working Group.  The goal of this working group is to explore the 

feasibility and applicability of a binary XML format and ultimately to develop a binary 

XML standard (W3C, 05).  Binary XML is “a format which does not conform to the 

XML specification yet maintains a well-defined, useful relationship with XML” (W3C, 

05).  Stated another way, a binary XML document is logically equivalent to an XML 

document but does not comply with the XML specification.  A key point is that it is 

possible to unambiguously and reversibly convert between standard XML and binary 

XML, preserving all relevant information. 

The XML Binary Characterization Working Group efforts focused on 

determining use cases and defining requirements for binary XML rather than the 

development or endorsement of a particular standard.  The proposed requirements include 

a list of characteristics that binary XML must support and a list of characteristics that 

binary XML must not prevent.  The “must support” list consists of characteristics such as 

platform neutrality, streamability and transport independence that are considered essential 

to the success of binary XML (i.e., binary XML will be unable to meet the requirements 

of the anticipated use cases if it does not exhibit these characteristics).  The “must not 

prevent” list includes characteristics such as processing efficiency, implementation cost 

and forward compatibility that relate to binary XML’s utilization and growth. 

The task of actually defining a standard binary XML encoding has fallen to the 

Efficient XML Exchange Working Group, a follow-on to the XML Binary 

Characterization Working Group.  A number of binary XML formats are currently under 

development with encoding strategies generally falling into one of two categories—

schema-based and non-schema-based.  Schema-based encodings use information 

contained in the schema to encode a document.  Non-schema-based encodings, on the 

other hand, rely solely on the content and structure of the document being encoded. 
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Regardless of whether a binary XML format is schema-based or non-schema-

based, the basic underpinnings normally involve the replacement of XML character 

sequences with more efficient data types.  At the center of both Fast Infoset (a non-

schema-based encoding method) (ITU, 05) and XSBC (a schema-based technique) 

(Serin, 03), for instance, are a set of lookup tables that are used to replace tag and 

attribute names, namespace prefixes and other common XML document constructs with 

integer references.  Both also replace character-based representations of numerical data 

with more efficient representations such as the Institute of Electrical and Electronics 

Engineers (IEEE) integer and floating point formats.  Finally, both eliminate superfluous 

content such as white space, end tags, quotation marks and other XML formatting 

characters (e.g., ‘<’ and ‘>’). 

Among the differences between schema-based and non-schema-based binary 

XML formats are the method by which the lookup tables are generated and whether or 

not the lookup tables are part of the binary XML document.  Fast Infoset, typical of non-

schema-based techniques, can generate the lookup tables as a document is encoded and 

most Fast Infoset documents include the tables at the beginning of the binary XML 

document.  Fast Infoset also allows the use of a reference to external lookup tables as an 

alternative to including the tables in the document itself.  This option is desirable for 

encoding small documents since the lookup tables in these cases are large relative to the 

rest of the encoding. 

Schema-based encoding techniques provide the option of building lookup tables 

before the document is parsed and saving them for future use rather than regenerating 

them for each document that is encoded.  Since lookup tables for schema-dependent 

encodings are independent of the documents themselves (i.e., the lookup tables for all 

documents complying with a given schema will be identical), the tables themselves do 

not need to be included in the binary XML document but can be generated by the 

application when the document is to be decoded. 

Since schema-based encoded binary XML documents do not directly incorporate 

the lookup tables, they have the advantage of smaller size (although this advantage 

disappears if the non-schema-based encoding uses a reference to a set of external lookup 
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tables).  This is particularly evident in  the smaller documents of Figure 3.5, which 

compares Fast Infoset and XSBC encodings of binary JAUS messages encoded as XML.  

Relatively small binary messages (typically in the neighborhood of 20 bytes), the XML 

encodings impose anywhere from a 25- to 60-fold increase in size (37.82 average).  Fast 

Infoset encoding of the XML results in only a small reduction in size, still 20 to 50 times 

the size of the equivalent binary messages (30.31 average).  Application of further 

compression to the Fast Infoset documents results in only minimal improvement (still 

22.18 average times larger than binary).  The same documents encoded with XSBC show 

significantly better results—from three to six times the size of the original binary 

messages (4.63 average).  Additionally, further compression of the XSBC-encoded 

documents in this case produces only negligible improvement (4.57 average times 

larger).  Although these documents are still significantly larger than the original binary 

messages, they are not so large as to preclude transmission over circuits typically used by 

autonomous vehicles. 
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Figure 3.5.   A Comparison of Fast Infoset and XML Schema-Based Binary Compression 

(XSBC) of XML Encoded Joint JAUS Messages to the Standard Binary 
Encodings and Uncompressed XML 

 

As evidenced by Figure 3.6, the size advantage of schema-based encoding 

techniques disappears with larger documents.  This figure compares Fast Infoset and 

XSBC encodings of large AVCL documents (7 to 30 megabytes in size).  For comparison 

purposes, the results are compared against space-delimited text documents containing 
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identical data.  The AVCL documents are roughly two and one half times larger than the 

space-delimited text documents, but application of either Fast Infoset or XSBC results in 

documents that are smaller than the space-delimited text documents.  Fast Infoset 

provided slightly better compression with an average document size of 61 percent of the 

space-delimited text (individual documents size ranged from 57 to 67 percent).  XSBC 

encoded document size averaged 72 percent of the equivalent space-delimited text (with 

individual documents ranging from 66 to 76 percent).  Further compression of either Fast 

Infoset or XSBC results using GZip resulted in an average size of 14 percent of the 

original space-delimited text (with individual documents ranging from 11 to 18 percent).  

Interestingly, applying GZip to the space-delimited text resulted in documents that were 

over twice as large as the GZipped binary XML. 
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Figure 3.6.   A Comparison of Fast Infoset and XSBC Compression of Autonomous 

Vehicle Command Language (AVCL) Mission Results Files 

 
The preceding data points illustrate that binary XML has the potential to extend 

the use of XML into domains for which it was previously unsuited.  A rapidly evolving 

field, the various methods for implementing binary XML have enough in common that in 

all likelihood, they will coalesce into a universal standard sooner rather than later.  Until 

then, if binary XML is desirable, the requirements of the application can dictate which 

encoding method to use, in particular whether to use a schema-based or non-schema-

based approach.  For instance, if document size is an important factor and small 
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documents are to be encoded, it is probably advisable to use schema-based encoding (or 

to use a non-schema-based strategy that allows an external reference to the lookup 

tables).  If only large documents are to be encoded, the decision is less critical, but non-

schema-specific encoding might provide a performance advantage since these strategies 

do not parse an external schema.  Obviously, if documents that are not schema-governed 

are to be encoded, non-schema-based encoding is warranted (alternatively, a synthetic 

schema can be generated based on the document content and structure). 

H. SUMMARY 
XML has a number of characteristics that make it potentially attractive for 

developing a common autonomous vehicle data model.  Among the most important XML 

capabilities are the ability to rigorously constrain document structure and content through 

the use of XML Schema and the related ability to automatically validate instance 

documents as they are loaded, created or modified.  Additionally, various standards are 

readily available to facilitate the application of XML to the domain of interest.  XSLT 

and XML data binding in particular play an important role in the implementation of a 

common autonomous vehicle data model.  Finally, emerging binary XML capabilities 

offer the promise of mitigating the one significant drawback to the use of XML in this 

area—its size. 

When viewed as a whole, the APIs, software packages, and utilities available to 

the XML application programmer facilitate the development of easy-to-use applications 

for the generating and processing XML documents of a specific type.  These applications 

are easily designed to validate document content and conduct error checking without 

requiring the end user to use or even understand the underlying XML structure.  

Considering that the potential users of autonomous vehicle systems are unlikely to 

possess significant XML expertise, this is an important capability for any vehicle support 

system that is intended for operational use.  Thus, a compelling case can be made for the 

use of an XML-based autonomous vehicle data model even before the ability to translate 

content to other forms using XSLT is considered. 

XML applications are most commonly written using the Java programming 

language.  The platform neutrality of Java mirrors that of XML, so it was only natural to 

include robust XML processing in Java.  Further, many of the XML utilities, standards 



 

68  

and applications that are utilized to support this research were designed and implemented 

with Java in mind.  Unfortunately, the platform neutrality of Java is not without cost.  

Since Java byte code runs on a Java Virtual Machine instead of a computer’s native 

processor, there is some overhead that can make Java applications less efficient than 

those written in languages that compile directly to machine-executable code. 

A number of parties are working on “real-time Java” as well as hardware and 

software solutions to improve the efficiency of Java implementations.  In time these 

efforts may lead to increased acceptance of Java as an appropriate programming language 

for real-time applications.  For the time being however, developers still gravitate towards 

the use of programming languages such as C and C++ to implement control software.  

Fortunately, this does not stand as a barrier to the use of XML for an autonomous vehicle 

data model.  As the advantages of XML have become more obvious and XML has been 

applied to a broader array of applications, the ability of languages other than Java to 

process XML has improved significantly.  In fact implementations for all of the utilities 

and standards discussed in this chapter are available in a number of languages.  Object-

oriented languages such as C++ in particular are quickly becoming XML-capable 

(Arcineas, 02).  Implementation languages, therefore, can be chosen on their own merits 

without inhibiting the use of XML as described here.
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IV. AUTONOMOUS VEHICLE COMMON DATA MODEL 
DEVELOPMENT 

A. DATA MODELS VERSUS ONTOLOGIES 
Thus far the terms “data model” and “ontology” have been used more or less 

interchangeably.  Researchers in the semantic web, knowledge management and ontology 

engineering fields will contend, however, that the terms imply similar but not quite 

interchangeable meaning.  Nevertheless, in practice, the distinction between what 

constitutes a data model and what constitutes an ontology is nebulous at best.  It is 

worthwhile, therefore, to briefly compare and contrast the salient characteristics of data 

models and ontologies in order to more precisely define what is being proposed and 

implemented by this research. 

A data model describes in an abstract way how data is represented in a business 

organization, information system or database management system.  A data model will 

rigorously characterize the data structure and content of the domain that it conceptualizes.  

Even so, the degree to which a model encapsulates semantics will depend on the 

expressiveness of the modeling formalism and the design decisions of the modeler.  

Generally speaking, the concept of a data model is significantly broader than that of an 

ontology in that many ontologies might also be considered data models, but few data 

models can also be considered ontologies. 

Although there exist many computer ontology definitions, they tend to include a 

number of common elements.  It is generally agreed that an ontology is an “agreement 

about a shared, formal, explicit and partial account of a conceptualization” (Guarino and 

Giaretta, 95).  At its core, an ontology contains the vocabulary, concept definitions and 

relationships for a given domain.  Part and parcel to any ontology, therefore, is the 

definition of domain rules that restrict and characterize the semantics of concepts and 

relationships.  Further, for a data model to qualify as an ontology it must be machine 

interpretable—that is, an application using the model must be able to infer the semantics 

without a priori knowledge of the model (Daconta, et al., 03).  Finally, it is assumed that 

applications “commit to” the semantics of an ontology prior to using it (Spyns, et al., 02). 
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Although these definitions provide some qualitative insight into the difference 

between a data model and an ontology, they do not effectively differentiate between the 

two or definitively classify the exemplar developed in the course of this research as one 

or the other.  This common quandary has led a number of researchers in the field to use 

rather arbitrary criteria to make the distinction.  Some differentiate based on the intended 

application domain—that is, data models apply to a single application or a single 

application type while ontologies apply to any application that is interested in the 

ontology’s domain (Gottgtroy, et al., 03)(Kalinichenko, et al., 03)(Jarrar, et al., 03).  

Others might make the distinction based on the modeling formalism utilized.  Entity-

Relationship and Extended Entity Relationship diagrams (Ramakrishnan and Gehrke, 

03), Object Role Modeling (Halpin, 01), Unified Modeling Language (OMG, 05) and 

XML Schema, for instance are used to develop data models, while the Defense Advanced 

Project Agency (DARPA) Agent Modeling Language + Ontology Inference Layer 

(DAML+OIL) (DARPA and IST, 01) and Web Ontology Language (OWL) (W3C, 04-5) 

are used to develop ontologies. 

Similar, but somewhat more subjective than using the intended application 

domain as a classification criterion is the notion of “genericity.”  This method of 

classification assumes that in order to be sharable and usable by a broad array of 

applications, ontologies must be more generic than data models which are not intended to 

be universally sharable.  (Spyns, et al., 02) proposes four characteristics relating to 

genericity that can be examined to determine whether a particular model should be 

considered an ontology.  First is the operational level of the intended data that the 

model’s rules constrain—do the rules apply at the implementation level (data types, 

ranges, keys, etc.) or are they more abstract.  The concept of expressive power refers to 

the data-engineering language utilized by the model—the degree to which it is concerned 

with defining structure and data integrity versus the ability to express meaningful 

constraints and relationships.  The third proposed measure of genericity is user purpose 

and goal relatedness, a subjective assessment of the how much influence the intended use 

of the model has on its design.  Finally, the extendibility of the model (i.e., the ability to 

add to or modify aspects of the model without impacting unrelated portions of the model) 

is considered.  It is worth noting that the authors of this paper are not proponents of large 



 

71  

monolithic ontologies defined with languages such as DAML+OIL or OWL, but prefer 

the layered, highly compartmentalized approach described in the paper.  Not surprisingly, 

this method of ontology / data model differentiation tends to favor the authors’ preferred 

method of ontology definition over others. 

A final method of data-model classification that avoids these somewhat arbitrary 

distinctions between data model and ontology utilizes a subjective scale along the lines of 

the ontological spectrum of Figure 4.1 (Daconta, et al., 02).  Here the goal is not 

specifically to determine whether or not a data model can be considered an ontology, but 

rather to assess the level of semantic richness of the model.  All models classifiable on 

the ontology spectrum can be considered ontologies to a degree, however models with 

stronger semantics are more accurately classified as ontologies in the generally accepted 

sense than those with weaker semantics. 

 
Figure 4.1.   The Ontology Spectrum (Weak to Strong Semantics) Demonstrating the 

Relationship between Ontology Types and Expressive Power                 
(From:  Daconta, et al., 02) 

 
The right side of the ontology spectrum of Figure 4.1 provides examples of the 

types of relationships that can be effectively expressed by a model locatable on that 
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portion of the scale with associated named model types (described in detail in (Daconta, 

et al., 02)) on the left (in bold).  The modeling languages on the left side of the scale are 

not used to classify models but rather to indicate the semantic strength that the respective 

languages are capable of expressing (e.g., a model expressed with DAML+OIL can be 

semantically weaker than a model expressed using an Extended Entity Relationship 

diagram despite the fact that DAML+OIL is significantly more expressive).  Specific 

models, therefore must be classified on their own merits as opposed to the merits of the 

language in which they are defined. 

The preceding discussion makes it clear that the distinction between a data model 

and an ontology is somewhat subjective.  It does, however, provide criteria by which to 

evaluate the type of data model that is proposed by this research.  Based on the arbitrary 

criteria of application domain (autonomous vehicle command and control) and model 

definition language (primarily XML Schema), AVCL does not qualify as an ontology.  

Similarly, based on the four suggested measures of genericity, AVCL is more accurately 

categorized as a data model than an ontology—its rules constrain implementation-level 

data, XML Schema constrains data content and structure but does not explicitly address 

semantics, the intended use of the model is the primary influence on its design, and the 

extendibility of the model can be cumbersome since changes have the potential to 

invalidate data instances that were previously compliant.  Finally, AVCL is probably best 

placed on the lower half of the ontology spectrum of Figure 4.1 due to the inability of 

XML Schema to explicitly express the strong semantics required by the upper portion of 

the spectrum in a machine interpretable manner.  It is more accurate then to describe the 

type of data model proposed by this research (with AVCL serving as the exemplar) as an 

XML-Schema governed data model in the domain of autonomous vehicle command and 

control than as an ontology in the same domain. 

B. AUTONOMOUS VEHICLE DATA MODEL DEVELOPMENT 

1. Overview 
The development of a data model of the type proposed by this research will have 

two primary influences.  First are the research goals described in Chapter I.  A suitable 

data model must contain a declarative, goal-based mission specification capability and 

associated goal set, a script-based, task-level mission specification capability and 
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associated task-level behavior set as well as an intervehicle messaging capability and 

associated message set.  The second driver of data model design is vehicle capability.  

The task-level behavior and message sets must be compatible with the actual capabilities 

of the target vehicles.  Stated differently, it must be possible to express target vehicle 

tasking and messaging using the data model’s task-level behavior and messaging 

constructs respectively.  Also, while not specifically required by the research goals, the 

exemplar data model of this research incorporates a mission results sections to facilitate 

post-mission data analysis.  Since the data model is intended to encapsulate 

implementation-level data, it requires well-defined data types, units and conventions at a 

more basic level in order to achieve the granularity necessary to operate with actual 

vehicles.  The remainder of this chapter describes the implementation of these data model 

attributes in the development of AVCL in order to illustrate design issues inherent in the 

development of a data model of this sort. 

2. Data Types and Conventions 

a. Units and Conventions 
The various command languages and data formats designed for real-world 

vehicles normally use specific units of measure and explicitly defined conventions to 

express and communicate vehicle characteristics and state parameters such as position 

and posture.  Since these vehicle-specific languages were designed around their 

respective target vehicles, they typically do not have cross-vehicle compatibility in mind.  

Therefore, the units of measure and other conventions often differ significantly from one 

vehicle to another.  Fortunately, conversion between the units of measure of different 

vehicle-specific data formats requires only multiplication by a scaling factor (units of 

measure utilized in AVCL are shown in Table 4.1).  Reconciliation of most other vehicle-

specific data format conventions, while somewhat more complicated, does not pose any 

great difficulty (Table 4.2 provides a summary of the conventions utilized in AVCL). 

Among the more difficult conventions to resolve are the various methods 

for expressing vehicle position and orientation.  Available methods for specifying a 

position (location on the face of the earth), for instance include Cartesian coordinates in a 

fixed reference frame, latitude and longitude, Military Grid Reference System and 

Universal Transverse Mercator grid, among others.  Conversion between these 
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conventions can be tedious if a high degree of precision is required, but various 

Geographical Information Systems and algorithms are available for this purpose.  The 

decision of which conventions to allow in the data model, therefore, can be left up to the 

modeler without impacting the model’s applicability to any particular vehicle-specific 

format so long as the Geographical Information System is utilized in the conversion 

process between the vehicle-specific and common data models. 

Measurement Unit Note 
Linear Distance meters   

Angular Distance degrees Used for heading, course, bearing, etc. but not 
control surface deflection. 

Linear Speed meters per second   

Linear Speed knots Nautical miles per hour, used as a convenient 
format for commanded speed. 

Angular Speed degrees per second   

Time seconds Can be relative to a fixed start time or current 
time depending on context. 

Table 4.1.   Standard Units of Measure used throughout the AVCL Schema 

 
In the case of AVCL the decision was made to allow positions to be 

specified with Cartesian coordinates or latitude and longitude.  Ultimately, positions 

(including the vertical component) are placed in a right-handed, earth-fixed reference 

frame with the positive X axis directed north, the positive Y axis directed east and the 

positive Z axis directed down.  Conversions between AVCL and vehicle-specific data 

formats that use other coordinate systems require multiplication by a rotation matrix as 

part of the conversion process.  Other than this simple conversion prerequisite, the 

decision to use this particular coordinate system carries no overhead (McGhee, et al., 00). 

There are also a number of methods commonly used to specify orientation 

including Euler angles, gimble angles, rotation matrices, angle / axis pairs, and 

quaternions.  Each of these methods has advantages and disadvantages, but as with 

position, translation of an orientation specification from one format to another is not 

difficult.  A detailed discussion of many of the issues arising from the use of competing 

coordinate system and orientation conventions can be found in (McGhee, et al., 00).  

Therefore, the decision to use Euler angles in AVCL (based on the assumption that users 

will find bank, pitch, and yaw more intuitive than other methods) does not inhibit the 
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compatibility of AVCL with any vehicle-specific method for specifying orientation.  

Additionally, the use of Euler angles within  AVCL does not preclude the use of another 

method for encoding orientation at the application level. 

Convention Description 
Earth-Fixed 
Coordinate System 

Right handed three-dimensional system with the positive X axis directed 
north, positive Y axis directed east and positive Z axis directed down. 

Body (Vehicle)-Fixed 
Coordinate System 

Right handed three-dimensional system with positive X axis forward, 
positive Y axis to the right, and positive Z axis out the vehicle bottom. 

Horizontal Position Latitude / Longitude--signed degrees and decimal degrees. 

Horizontal Position Cartesian Coordinates--(x, y) coordinate in the earth-fixed reference 
frame. 

Horizontal Position 
Relative Position--displacement from the current vehicle's position in 
earth-fixed coordinates (meters north and east of current vehicle 
position). 

Orientation 
Euler Angles (bank, pitch, and yaw or Φ, θ and Ψ)--in order rotation about 
the earth-fixed X, Y, and Z axes (or equivalently, in-order rotation about 
body-fixed Z, Y, and X axes). 

Linear Velocity  
Meters per second rate of travel relative to the earth-fixed coordinate 
frame              . 

Linear Velocity 
Meters per second rate of travel relative to the body-fixed coordinate 
frame               . 

Angular Velocity Degrees per second Euler angle rate                . 

Angular Velocity 
Degrees per second rate of rotation about the body fixed coordinate 
system              . 

UUV Vertical Position Depth below the surface. 
UUV Vertical Position Altitude above the sea floor. 
UAV Vertical Position Altitude above mean sea level. 
UAV Vertical Position Altitude above ground level. 
Actuator Setting Percentage of maximum actuator authority (possibly signed). 

Table 4.2.   Miscellaneous Conventions used in AVCL 

 

b. Simple Data Types 
Specifications for non-XML, vehicle-specific data formats must often 

precisely define even simple data types.  JAUS, for instance, mandates the use of the 

eight integer types and two floating point types of Table 2.2, and also defines a method 

for defining scaled integers where an integer data type is used as an index into a finite set 

of real numbers occurring at fixed intervals between a lower and upper bound (JAUS, 04-

3).  Additionally, the JAUS Reference Architecture must deal with byte ordering both of 

individual data units and data streams.  An XML-based data model, on the other hand, 

makes much of the low-level data type definition unnecessary.  Tables 4.3 and 4.4 

( )zyx ,,

( )wvu ,,
( )ψθφ ,,

( )rqp ,,
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contain descriptions of built-in primitive and derived data types respectively that can be 

used by any XML Schema-governed data model.  Rigorous definition of these data types 

in the XML specification provides XML parsers, XSLT processors, XML data-binders, 

XML binary encoders and other applications all of the information necessary to process 

data instances.  Further definition in the context of a particular data model is therefore not 

required. 

 
Subtype 

Primitive Data 
Type 

 
Description 

String Types string A finite-length sequence of characters. 

  anyURI A standard internet uniform resource identifier 
(URI). 

  NOTATION Declares links to non-XML content and 
associates it with an external application. 

  QName A namespace-qualified XML name. 
Encoded Binary Types Boolean true or false. 

  hexBinary Binary data represented as a series of two-
character hex strings. 

  base64Binary A binary encoding of a limited set of ASCII 
characters. 

Numeric Types decimal A floating point number of arbitrary precision. 

  float An IEEE single-precision 32-bit floating point 
number. 

  double An IEEE double-precision 64-bit floating point 
number. 

Date / Time Types duration Specifies a duration in years, months, days, 
hours, minutes and seconds. 

  dateTime Specifies a specific time of day on a specific 
Gregorian calendar date. 

  date Specifies a Gregorian calendar date. 
  time Specifies a time of day. 

  gYearMonth Specifies the year and month of a Gregorian 
calendar date. 

  gYearDay Specifies the year and day of a Gregorian 
calendar date. 

  gYear Specifies the year of a Gregorian calendar date. 

  gMonthDay Specifies the month and day of a Gregorian 
calendar date. 

  gMonth Specifies the month of a Gregorian calendar 
date. 

  gDay Specifies the day of a Gregorian calendar date. 

Table 4.3.   Predefined XML Schema Primitive Datatypes 

 
The predefined data types available in XML Schema suffice for many 

elements of most data models, but they are often insufficient for at least some model 
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elements.  The use of XML Schema, therefore, does not normally absolve the modeler 

from the responsibility of defining special simple data types to fit the requirements of the 

various model domains.  For numerical and date data, schema-defined data types usually 

specify a continuous or discrete range of values.  For string and encoded binary types, a 

finite set of potential values is normally defined (referred to as enumeration values). 

Base Primitive Type Derived Data Type Description 

string normalizedString A string with each white space character replaced 
with a space character. 

  token 
A string with leading and trailing white space 
eliminated and internal white space reduced to 
single space characters. 

  language A natural language two or three character identifier 
string. 

  Name A valid XML 1.0 element or attribute name. 

  NCName A valid XML 1.0 element or attribute name that 
prohibits the use of the ':' character. 

  ID A token that is used as a unique identifier for an 
element. 

  IDREF A reference to an element identified with an ID. 
  IDREFS A space-delimited sequence of IDREFs. 
  NMTOKEN Similar to NCName, but allows leading numbers. 
  NMTOKENS A space-delimited sequence of NMTOKENs. 

  ENTITY An NCName that refers to a pre or user-defined 
"entity" that is to be inlined. 

  ENTITIES A space-delimited sequence of ENTITYs. 
decimal integer Any integer number. 
  negativeInteger Any integer number with a value less than zero. 
  positiveInteger Any integer number with a value greater than zero.

  nonNegativeInteger Any integer number with a value greater than or 
equal to zero. 

  nonPositiveInteger Any integer number with a value less than or equal 
to zero. 

  byte An 8-bit signed integer. 
  short A 16-bit signed integer. 
  int A 32-bit signed integer. 
  long A 64-bit signed integer. 
  unsignedByte A non-negative 8-bit integer number. 
  unsignedShort A non-negative 16-bit integer number. 
  unsignedInt A non-negative 32-bit integer number. 
  unsignedLong A non-negative 64-bit integer number. 

Table 4.4.   Predefined XML Schema Datatypes that are Derived from Primitive Types 

 
As with similar decisions in programming in general, the choice of which 

predefined data type to use as the basis of a schema-defined type is often arbitrary (e.g., 
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the int or integer primitive XML types are largely interchangeable within AVCL  

schema).  In the case of the exemplar data model of this research, decisions concerning 

which XML data types to utilize as the basis for schema-defined AVCL simple types 

were based on the heuristics of the data-binding software—the Sun Microsystems’ JAXB 

API Specifically, XML numerical data types were chosen that JAXB binds to primitive 

types in the Java programming language (double and int in most cases). 

An exemplar subset of the schema-defined simple datatypes from AVCL 

are summarized in Table 4.5.  Numerical types defined by the schema are utilized in 

multiple places.  Commands that explicitly set vehicle control actuators, for example, 

utilize either the percentType or signedPercentType regardless of the actuator’s 

characteristics or potential vehicle-specific methods of specifying its setting (the value 

specifies the percentage of maximum actuator authority that is being commanded).  The 

percentType is used for actuators with settings that are always positive (e.g., a UAV’s 

engine power).  The signedPercentType, on the other hand, is used to command actuators 

whose settings can have values that are either positive or negative (e.g., a UUV’s rudder 

deflection). 

Schema-defined string types in AVCL are far less general in their use.  

Normally appearing in only one or two places within the schema, strings provide a 

reader-friendly format for specific data items that might be equivalently implemented as 

integers.  The reportingCriteriaType, for instance, is used to tell the vehicle when to 

transmit status reports as it attempts to accomplish the specified goals and has potential 

values of “never,” “periodic,” “statusChanged,”  “onCommence” or “onComplete.”  This 

particular type can be equivalently represented with the integers zero through four, but 

the syntactic sugar of the string type makes the resulting XML documents more readable 

by human operators. 

A full description of all AVCL-defined simple datatypes can be found in 

Appendix A.  It is worth emphasizing that a data model of the type implemented in this 

research implicitly relies on rigorously defined datatypes even though the details of 

individual type definitions themselves are often arbitrary in nature.  The preceding 

discussion provides an overview of some of the considerations regarding the definition of 
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simple datatypes for an XML Schema-governed data model that is intended to be 

compatible with arbitrary application-level data models in a specific domain. 

AVCL Simple Type XML Base Type Description 
positiveIntType int A 32-bit integer with a value greater than zero. 

nonNegativeIntType int A 32-bit integer with a value greater than or equal 
to zero. 

clockHoursType unsignedByte Possible military time hour values (0 to 23). 

clockMinutesType unsignedByte Possible wall clock minutes or seconds values (0 
to 59). 

timeZoneType byte Possible time zone offsets (hours) to Greenwich 
Mean Time (-12 to 12). 

positiveScalarType double Double precision floating point number with a 
value greater than zero. 

percentType double Double precision floating point number with a 
value between 0.0 and 100.0. 

signedPercentType double Double precision floating point number with a 
value between -100.0 and 100.0. 

latitudeType double Double precision floating point number 
representing a geographic latitude (-90.0 to 90.0). 

longitudeType double 
Double precision floating point number 
representing a geographic longitude (-180.0 to 
180.0). 

headingType double Double precision floating point number 
representing a direction (0.0 to 360.0 degrees). 

datumTypeType string Enumerated list of search datum types (e.g., point 
or area). 

sensorTypeType string Enumerated list of sensor types. 

trackModeType string Enumeration for potential navigation modes 
between waypoints. 

reportingCriteriaType string Enumeration defining when status reports are 
required. 

acknowledgeType string Enumeration defining whether a message needs 
acknowledgement. 

Table 4.5.   Exemplar AVCL Schema-Defined Simple Datatypes and the Predefined 
XML Datatypes from which they are Derived 

 

3. Task-Level Behaviors 
As discussed briefly in Chapter I, the set of task-level behaviors is a key 

component of the proposed common data model for autonomous vehicle operations since 

virtually every other aspect of this research relies on task-level behaviors.  Task-level 

behavior definition and implementation is therefore a crucial piece of this research. 

The assertions that vehicles of a particular type operate in more or less the same 

manner and that arbitrary vehicles can have their operations described using a single 
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vocabulary are not new.  The Platform, Manipulator and Environment Sensor Subgroups 

of the JAUS Command Class message set (partially listed in Table 2.3), for instance, 

amount to a set of command messages that is potentially applicable to a broad array of 

vehicles (JAUS, 04-4).  This command set is a direct (and probably inevitable) byproduct 

of the development JAUS as a vehicle-independent, open architecture designed around a 

message set and a fixed set of software components.  An important aspect of the JAUS 

command set is that it is suitable for vehicles in multiple classes despite the fact that it 

was initially designed primarily for ground vehicles.  That is, the commands are 

applicable not only to UGVs, but also to USVs, UAVs, and UUVs. 

Of particular interest to this research are the commands of the JAUS Platform 

message subgroup (Table 4.6) because they deal with vehicle maneuvering.   Each of 

these commands implicitly falls into one of four categories:  open-loop, closed-loop / 

open-ended, closed-loop / terminating, or miscellaneous.  Commands such as the Set 

Wrench Effort command, used to set the vehicle’s six-degree-of-freedom propulsive 

effort, are open-loop commands.  Commands of this sort explicitly set vehicle actuators 

without regard to the results—they simply tell the vehicle how fast to spin a propeller or 

how far to deflect a rudder.  Further, there is no criteria by which to gauge the completion 

of the command, so open-loop commands remain in effect until superseded.  Closed-loop 

/ open-ended commands direct the maintenance of one or more vehicle-state 

characteristics and implementation requires state feedback to the controller.  For instance, 

Set Global Vector commands the vehicle to maintain a specific forward speed, altitude, 

and orientation.  A vehicle controller requires current speed, altitude and orientation 

information to make actuator adjustments to maintain the commanded state.  As with 

open-loop commands, there are no predetermined completion criteria for closed-loop / 

open-ended commands, so once issued they remain in effect until superseded.  Closed-

loop / terminating commands are similar in that implementation requires state feedback, 

however commands of this type have implicit completion criteria.  The most obvious 

JAUS command in this category is the Set Global Waypoint command that directs the 

vehicle to travel to a specified location.  Once the commanded location has been reached, 

the command is complete and the vehicle reverts to some other form of control (the 

JAUS Reference Architecture does not specify a fallback control mode).  Finally, 
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miscellaneous commands do not directly affect vehicle control, but set vehicle switches 

and parameters that may indirectly affect control.  The only JAUS Platform subgroup 

message falling into this category is the Set Discrete Devices command which is used to 

command the status of the vehicle’s propulsion system and associated subsystems.  While 

not explicitly addressed in the JAUS Reference Architecture, the concepts of open-loop 

versus closed-loop and terminating versus open-ended commands are inherent aspects the 

command set.  Not surprisingly, they are also relevant to other efforts in the area of 

vehicle-independent command. 

Message Name Command Category Command Description 

Set Wrench Effort Open-Loop 
Commands the propulsive effort and / or 
braking effort in each of 6 potential degrees 
of freedom. 

Set Global Vector Closed-Loop /       
Open-Ended 

Commands the forward speed, altitude and 
orientation (bank, pitch and roll). 

Set Travel Speed Closed-Loop /        
Open-Ended Commands the vehicle's forward speed. 

Set Global Waypoint Closed-Loop / 
Terminating 

Commands the vehicle to proceed to a 
specific position (latitude / longitude, altitude 
and orientation). 

Set Global Path 
Segment 

Closed-Loop / 
Terminating 

Commands the vehicle to travel a specified 
path. 

Set Discrete Devices Miscellaneous Commands all controllable settings of the 
vehicle's propulsive system. 

Table 4.6.   JAUS Command Class Platform Subgroup Messages 

 
The generic behaviors of CCL are somewhat more directly in line with the 

common autonomous vehicle data model task-level behavior set than the JAUS command 

set.  In general, a behavior is a “definable unit of (normally low-level) activity initiated 

by certain inputs which generates certain outputs as a result of its activity” (Turner, et al., 

93).  A generic behavior is simply a behavior that is intended to be applicable across a 

spectrum of different vehicle types.  Envisioned as the basis for a vehicle-independent 

UUV control architecture, eight potential functional categories of generic behaviors were 

initially explored (Turner, et al., 93): 

• Low-level movement:  attractive and repulsive behaviors 

• Medium-level movement:  obstacle avoidance, physical boundary 
following, wandering, etc. 

• Sensor centric:  assess sensor operation, modify sensing mode, etc. 
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• Effector centric:  assess effector operation, modify effector operating 
mode, etc. 

• Homeostatic:  monitor operational envelopes, monitor energy budget, 
maintain trim, etc. 

• Navigational level:  path planning, situational assessment, searching, 
exploring, etc. 

• Mission level:  plan mission, make maps, assess threat, cooperate (with 
other agents), etc. 

• Communication:  message-level and discourse-level (i.e., conversation-
level) communication 

As a result of efforts to determine both a level of behavior abstraction appropriate 

for mission definition as well as the lowest level of behavior that can reasonably be 

considered hardware independent, the preceding list of functional categories for generic 

behaviors eventually evolved into the nine categories of Table 4.7 during the 

development of CCL (Komerska, et al., 99-2).  CCL-related efforts  to date have been 

focused on defining and implementing commands of the maneuver, navigate, 

communicate, configure, monitor, and execute convention categories.  Commands of 

these categories are used to direct vehicle motion, monitor and react to internal and 

external events, and specify interactions between vehicles. 

Functional Category Description 
Maneuver Move or relocate in a certain manner. 
Navigate Update the vehicle internal reference location. 

Communicate Send (or request) information about the vehicle's state or understanding 
of the world. 

Configure Change a preconfigured aspect of the vehicle.  

Monitor Monitor an aspect of the vehicle and perform actions if specified criteria 
are met. 

Execute Convention Carry out a universally understood action. 
Acquire Samples Collect samples from the external environment. 
Sense Manipulate, configure, or utilize the vehicle's sensors. 
Manipulate Manipulate, configure, or utilize the vehicle’s effectors. 

Table 4.7.   Generic Behavior Functional Categories of the CCL                                 
(After:  Komerska, et al., 99-2) 

 
In addition to the functional categories Table 4.7, the evolution of CCL provides 

an expanded analysis of behavior execution termination and the associated 

implementation issues.  As previously noted different types of behaviors have inherently 
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different durations or time arcs over which they are active.  In general there are three 

possible time-arc characterizations for a behavior.  Some behaviors (such as those 

affecting device or vehicle settings) have very specific time arcs.  Other behaviors have 

indeterminate but finite time arcs.  Referred to as terminating in the previous discussion, 

behaviors of this sort have specific criteria that dictate success and the behavior’s time 

arc ends when all criteria have been met.  Finally, some behaviors can have potentially 

infinite time arcs.  The open-loop and closed-loop / open-ended commands of the 

previous discussion fall into this category.  From the standpoint of a vehicle-independent 

command language or data model, the various conditions under which behaviors can be 

terminated necessitates design decisions to avoid ambiguity and facilitate real-world use.  

In particular, it is probably inadvisable to allow behaviors with potentially infinite time 

arcs to remain active indefinitely.  Additionally, it is possible for commands with 

indeterminate but finite time arcs to fail (e.g., a transit point might be unachievable, or 

the sea state might be too high to allow a GPS fix to be obtained).  For this reason it is 

probably advisable to preclude even behaviors that normally terminate from remaining 

active indefinitely.  Most vehicle command languages, including CCL and AVCL, 

prescribe the use of user-specified or default time outs for commands or behaviors that 

are not guaranteed to terminate.  JAUS is an exception to this practice, probably a result 

of its extensive use to date in remotely operated vice autonomous vehicles. 

Generic behaviors implemented in CCL along with their specified terminating 

criteria are listed in Table 4.8.  One observation that can be made concerning CCL’s set 

of generic behaviors is that there are no open-loop behaviors and only one closed-loop / 

open-ended behavior (Transit).  This is a direct result of efforts to develop a hardware-

independent behavior set that provides a level of abstraction appropriate for the mission 

level.  In contrast the AVCL task-level behavior set does include a number of open-loop 

behaviors.  In practice, however, these types of behaviors are rarely utilized by actual 

autonomous vehicles outside of systems testing (again, the use of open-loop commands 

in JAUS is a result of its use in remotely operated vehicles).  The availability of open-

loop commands in AVCL, therefore, is not meant to imply that they are a necessary 

component of a common data model.  Nevertheless their commonplace use in human-in-

the-loop systems makes them a sensible addition to the AVCL repertoire. 
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Generic Behavior 

Functional 
Category 

 
Description 

Termination 
Criteria 

GoTo Maneuver Transit to the specified 
location. 

Destination reached 
or time out 

MaintainPosition Maneuver Stay at the specified position. Time out 

Transit Maneuver 
Travel in the specified 
direction at the specified 
speed. 

Time out 

GPSFix Navigation Obtain a global positioning 
system fix. 

GPS fix obtained or 
time out 

AvoidRegion Navigation Do not enter the specified 
area. Explicitly cleared 

CommunicateStatus Communicate Transmit current status 
message. 

Message sent or 
time out 

CommunicateCapabilities Communicate Transmit vehicle capabilities 
summary message. 

Message sent or 
time out 

CommunicateFile Communicate Transmit a requested file. Message sent or 
time out 

CommunicateParameters Communicate Transmit vehicle parameters 
message. 

Message sent or 
time out 

CommunicateMessage Communicate Transmit a text message. Message sent or 
time out 

ConfigureParameters Configure Modify the specified vehicle 
parameters. 

Parameter 
configured 

MonitorParameter Monitor 
Monitor a specified parameter 
and report the values when 
directed. 

As scheduled 

SystemAdmin Execute 
Convention 

Alter the specified system 
administrative aspects. Command executed

ModifyBehavior Execute 
Convention 

Modify the currently executing 
task or mission. Command executed

Table 4.8.   CCL Generic Behaviors, Functional Categories, and Termination Criteria 
(After:  Komerska, 05) 

 

A partial listing of AVCL task-level behaviors can be found in Tables 4.9 through 

4.12.  Task-level behaviors not included in this summary apply primarily to simulations 

and do not affect mission execution; these behaviors are covered in Appendix A.  With 

the exception of the open-loop commands, most AVCL task-level behaviors are similar 

to generic behaviors of the CCL maneuver, navigate and communicate functional 

categories.  The semantics of individual behaviors differ somewhat however.  For 

instance AVCL provides a number of closed-loop / open-ended behaviors to control 

individual state values, whereas CCL provides only the Transit generic behavior.  

Conversely, CCL defines multiple behaviors in the communications functional category, 

while AVCL utilizes a single SendMessage behavior for all required communication.  
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Additionally, CCL does not implement behaviors that correlate to many of AVCL’s 

miscellaneous task-level behaviors, most notably the Wait and WaitUntilTime behaviors. 

Task-Level 
Behavior 

 
Description 

Next Behavior 
Issue Criteria 

Termination 
Criteria 

Waypoint Transit to a location. Behavior 
complete 

Destination reached 
or time out 

CompositeWaypoint A parametrically specified 
pattern of waypoints.  

Behavior 
complete 

Last waypoint 
reached or time out 

Hover Proceed to a specified location 
and hover (UUV only). 

Behavior 
complete 

Destination reached 
or time out 

Loiter Proceed to a specified location 
and remain in the vicinity. 

Behavior 
complete 

Destination reached 
or time out 

TakeStation 
Maintain position at a specified 
range and bearing from an 
object. 

Behavior 
complete 

Destination reached 
or time out 

Recover Proceed to recovery station at 
the specified position. 

Behavior 
complete Recovery complete 

Table 4.9.   AVCL Closed-Loop / Terminating Task-Level Behaviors that have Implicit 
Termination Criteria 

 

Task-Level 
Behavior 

 
Description 

Next Behavior 
Issue Criteria 

Termination 
Criteria 

MakeAltitudeAGL Maintain the specified altitude 
above ground level (UAV only). Immediate New vertical 

command 

MakeAltitudeMSL 
Maintain the specified altitude 
above mean sea level (UAV 
only). 

Immediate New vertical 
command 

MakeAltitude Maintain the specified altitude 
above the sea floor (UUV only). Immediate New vertical 

command 

MakeDepth 
Maintain the specified depth 
below the sea surface (UUV 
only). 

Immediate New vertical 
command 

MakeHeading Maintain the specified heading. Immediate New heading 
command 

MakeSpeed Maintain the specified forward 
speed (m/sec). Immediate New speed 

command 

MakeKnots Maintain the specified forward 
speed (knots). Immediate New speed 

command 

MoveLateral 
Move laterally at the specified 
speed (cross-body-thruster 
UUV only). 

Immediate New Horizontal 
control mode 

MoveRotate Rotate about the vehicle's Z 
axis (cross-body-thruster UUV). Immediate New horizontal 

control mode 

Table 4.10.   AVCL Closed-Loop / Open-Ended Task-Level Behaviors Requiring State 
Feedback Control for an Indeterminate Period of Time 
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Task-Level 
Behavior 

 
Description 

Next Behavior 
Issue Criteria 

Termination 
Criteria 

SetAileron 
Set the aileron deflection to the 
specified percent of maximum 
(UAV only). 

Immediate New Horizontal 
control mode 

SetElevator 
Set the elevator deflection to 
the specified percent of 
maximum (UAV only). 

Immediate New speed 
command 

SetPlanes 

Sets the deflection of the 
horizontal planes to the 
specified percent of maximum 
(UUV only). 

Immediate New vertical 
command 

SetPower 
Sets the forward propulsion 
power to the specified percent 
of maximum. 

Immediate New power 
command 

SetRudder Sets the rudder to the specified 
percent of maximum. Immediate New horizontal 

control mode 

SetBodyThruster 

Sets the cross-body thruster 
power to the specified percent 
of maximum (cross-body-
thruster UUV only). 

Immediate New horizontal 
control mode 

Table 4.11.   AVCL Open-Loop Task-Level Behaviors that Remain Active for an 
Indeterminate Period of Time 

 
Closely related to behavior time-arc termination is the issue of when to activate a 

behavior (i.e., at what point in the mission’s execution do the specified behaviors become 

active).  Unlike the commands of a typical sequential script or the tasks of a hierarchical 

controller, multiple behaviors will often be active simultaneously.  The default behavior 

activation heuristic in CCL is to activate behaviors sequentially (i.e., not in parallel), as if 

the behavior sequence were a script.  If multiple behaviors are processed at the same 

time, the first one is activated.  Once the termination criteria of the behavior is met, the 

next behavior is activated.  Alternatively, behaviors can be scheduled to activate when 

user-specified criteria are met.  Starting criteria can be as simple as an absolute, relative 

or periodic time or can be based on the values of one or more monitored parameters. 

(Komerska, 05) 
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Task-Level 
Behavior 

 
Description 

Next Behavior 
Issue Criteria 

Termination 
Criteria 

Wait 
Continue all current control 
modes for a specified period of 
time. 

Behavior 
complete Time out 

WaitUntilTime Continue all current control 
modes until a specified time. 

Behavior 
complete Time out 

GpsFix Obtain a global positioning 
system fix. 

Behavior 
complete 

GPS fix obtained or 
time out 

SendMessage Transmit a message to another 
vehicle or control station. Immediate Message sent 

SetTime Reset internal vehicle time to 
the specified time. Immediate Time reset 

SetStandoff Set the acceptable distance 
error for location capture. Immediate Standoff reset 

SetPosition 
Reset the internally maintained 
vehicle position to the specified 
location. 

Immediate Position reset 

MissionScript 
Replace the current task-level 
behavior script with one loaded 
from a specified file. 

Behavior 
complete Script loaded 

MissionScriptInline 
Load a new task-level behavior 
script from a specified file and 
include it in the current script. 

Behavior 
complete Script loaded 

Quit Shut down all vehicle systems. Behavior 
complete Shutdown complete 

Table 4.12.   Miscellaneous AVCL Task-Level Behaviors 

 
AVCL takes a slightly different approach to the initiation of scripted task-level 

behaviors.  As with CCL behaviors lacking scheduling criteria, AVCL task-level scripts 

are executed in order.  However, for a some AVCL task-level behaviors, it is 

inappropriate to wait until a behavior terminates before activating the next behavior.  In 

particular a number of individual AVCL task-level behaviors affect only a subset of the 

vehicle’s controllable parameters and do not provide any guidance for how the vehicle is 

to control other aspects of its overall behavior (e.g., a behavior may direct a UUV to 

maintain a specific heading while leaving depth and speed unspecified).  In these cases it 

makes sense to activate the next scripted behavior immediately. 

AVCL bases its heuristic for scripted task-level behavior activation on the 

previously activated behavior.  When reasonable, primarily in the case of closed-loop / 

terminating behaviors, a behavior is allowed to terminate before the next behavior is 

activated.  In other cases, for instance when encountering open-loop or closed-loop / 



 

88  

open-ended behaviors, the next behavior is activated immediately (even if it supersedes 

and therefore terminates the previously activated behavior). 

The default AVCL behavior activation heuristic can be effectively overridden 

with the Wait or WaitUntilTime behaviors, both of which inhibit further behavior 

activation until they terminate.  When used in conjunction with closed-loop / open-ended 

behaviors, the Wait and WaitUntilTime have the effect of driving the vehicle along a 

trajectory for a specified period of time without regard to the vehicle’s location upon 

behavior termination (similar to the JAUS Set Global Vector command or the CCL 

Transit generic behavior).  When used in conjunction with closed-loop / terminating 

behaviors, the expected vehicle behavior is to maintain the location directed by the 

closed-loop behavior for the specified period of time. 

The preceding discussion is not intended to constitute an exhaustive examination 

of the AVCL task-level behavior set (further discussion is left to Appendix A), but it does 

provide a comparison of the AVCL task-level behaviors and the CCL generic behaviors 

(and to a lesser extent the JAUS Platform message subgroup).  Given the similarity of 

purpose, it is not surprising that AVCL behaviors and CCL behaviors share many 

characteristics.  These similarities support the assertion that all activities undertaken by 

an autonomous vehicle of a given type come from a finite set of capabilities and that this 

set is essentially the same for all like vehicles.  Further, it illustrates that these tasks can 

be identified, described and ultimately utilized to express tasking for arbitrary vehicles.  

The differences, however, illustrate that the suitable set of simple tasks is far from unique 

and that the data-model designer has some leeway in deciding the makeup of the set (i.e., 

the definition of the individual tasks comprising the set) as well as how and under what 

circumstances tasks are executed.  For this reason the AVCL task-level behavior set is 

proposed as a potential vehicle-independent task set for expressing vehicle tasking, but 

no implication is made that it is the only or best task set available for this purpose.  

Within the larger context of the common data model it is important only that a suitable 

command set be developed and implemented.  The AVCL task-level behavior set meets 

this requirement and effectively supports the other aspects of this research, in particular 

the equivalent mapping of AVCL behaviors to and from other command sets. 
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4. Declarative Task Specification 
A common approach to realizing robust vehicle capability is from the bottom 

up—that is, combining low-level behaviors into increasingly complex aggregate 

behaviors.  This is, the approach taken, for example, by CCL.  Individual generic 

behaviors are defined and combined to form more complex behaviors that in turn can be 

used to define still-more complex behaviors.  In the current development implementation 

of CCL, the kΩ planner running in the Distributed Control Environment software 

environment uses the current world model and the values of the monitored parameters to 

determine which behaviors need to be active.  Additionally, the ability exists to 

instantiate new behaviors and modify existing ones as required to adapt to a changing 

environment (Duarte, et al., 05). 

The data model developed in the course of this research supports complex 

autonomous vehicle operations through a completely different mechanism.  Rather than 

requiring complex behaviors to be generated from the bottom up, AVCL provides for a 

description of the desired outcome, or goals, of an autonomous vehicle mission.  This 

description, referred to as an agenda, is then used to plan behavior sequences to achieve 

the goals (derivation of behavior sequences is described in Chapters VI and VII).  This 

method of describing a mission and the ability to convert it into a task-level behavior 

sequence can be applied in two ways.  First, if used as part of a mission-planning system, 

a behavior sequence can be generated and translated into a vehicle-specific format for use 

in an actual vehicle.  Although use of a declarative agenda in this manner does not allow 

a vehicle to adapt to a changing environment, the clarity of declarative missions offers 

advantages over manual generation of vehicle-specific scripts.  The second way of using 

a goal-based mission description is as the input to the top-level of a multi-layer control 

architecture.  When used in this manner, the data-model-compliant portions of the control 

architecture (i.e., the upper layers) use current knowledge about the world state to plan an 

appropriate task-level behavior sequence.  This behavior sequence is ultimately converted 

into a vehicle-specific format for execution by the lower layers of the architecture 

(installation of a multi-layer AVCL-based controller on a non-AVCL vehicle is described 

in Chapter VII). 
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Goal-based declarative agenda descriptions in AVCL take the form of a binary 

finite state machine.  Each state represents a single goal that the mission is to accomplish.  

State transitions occur when the vehicle successfully achieves a goal or fails to do so 

(e.g., exceeds allotted time or experiences a system failure that precludes goal success).  

The declarative mission description includes the start state (i.e., the first goal that the 

mission is to attempt), the vehicle’s intended launch and recovery positions, and a list of 

areas that the vehicle is to avoid entering.  The agenda is complete when a goal concludes 

(successfully or unsuccessfully) and there is no transition associated with that goal’s 

success or failure.  Figure 4.2 graphically depicts a UUV mission specified in this 

manner.  In the example, the UUV will first attempt to search Area A.  If successful, the 

vehicle will attempt to sample the environment of Area A (upon failure the vehicle will 

attempt to search Area B).  If the area is successfully sampled, the vehicle will proceed to 

and search Area B.  The mission will proceed from goal to goal in this manner until 

encountering a goal from which there is no transition specified.  At this point the vehicle 

will transit to the recovery location and conduct any mission completion activities. 

 
Figure 4.2.   A Finite State Machine Representing the Goals and Mission Flow of an 

Exemplar Declarative UUV Agenda 

 
In order to be of practical use, it is desirable for the data model to include not only 

a mechanism for describing mission flow, but a set of goal types for expressing specific 

goals.  Similar to the task-level behavior set in that they are to be vehicle-independent, 
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the goal set consists of potential high-level mission objectives such as area search or 

rendezvous with another vehicle for data transfer.  Some insight into the types of mission 

objectives that are potentially assignable to autonomous vehicles can be found in 

documents such as the Joint Robotics Program’s Unmanned Ground Vehicle Master Plan 

(JRP, 04), the U.S. Navy’s tactical memorandum regarding the integration of unmanned 

vehicles into maritime operations (CNO, 04) and the NAS study of the same subject 

(NAS, 05).  Also applicable are JC3IEDM sections relating to action specification, since 

the command and control information that these portions of the model convey similar 

information as the goals of the data model.  Because compatibility with external 

command and control systems is a design goal, it is reasonable to use a mechanism 

similar to JC3IEDM to specify goals in AVCL. 

In this context, further examination of the JC3IEDM is warranted.  JC3IEDM 

enumerates a total of 188 action types that can be represented by the model and utilized 

to provide tasking or summarize unit activities (MIP, 03-1).  Most of these are not 

applicable to the autonomous vehicle domain and can be discarded.  Ultimately, the 14 

JC3IEDM action types of Table 4.13 were utilized as the basis for the AVCL goal set.  

Although other action-task activities are potentially applicable to autonomous vehicles, 

these activity types are proposed as a starting point for expressing tasks that autonomous 

vehicles might reasonably be expected to execute.  This mapping does not imply, 

however, that all autonomous vehicles are capable of achieving goals of any type.  For 

instance, it is unreasonable to expect an unarmed vehicle to successfully complete an 

Attack goal or a vehicle without electromagnetic sensors to intercept electromagnetic 

transmissions.  Such cases are dealt with during the translation process to ensure that 

vehicles are not inappropriately tasked. 

Each AVCL goal type listed in Table 4.13 has a number of common data 

parameters.  For instance the instantiation of any goal includes the subsequent goals to 

execute upon successful or unsuccessful completion (i.e., the outbound transitions of the 

finite state machine state).  Additionally, each goal must specify the operating area and 

timing constraints (start and end times or a maximum duration).  Finally, each goal may 

include reporting criteria that dictate when status messages are to be transmitted (e.g., 

periodic, start and finish, any status change, etc.). 
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JC3IEDM Action 
Task Activity 

Corresponding 
AVCL Goal Type 

 
Description 

Attack, not 
otherwise specified Attack 

To conduct a type of offensive action characterized 
by employment of firepower and maneuver to 
close with and destroy an enemy. 

Decontamination 
Services Decontaminate 

To provide purification making an area safe by 
absorbing, destroying, neutralizing, making 
harmless, or removing chemical, biological, or 
nuclear contamination. 

Demolish Demolish To destroy structures, facilities, or material by any 
available means. 

Illuminate IlluminateArea To provide battlespace lighting by searchlight or 
pyrotechnics. 

Intercept MonitorTransmissions
To conduct electronic warfare support operations 
with a view to searching, locating, recording and 
analyzing radiated electromagnetic energy. 

Jam Jam 
To deliberately radiate, re-radiate or reflect 
electromagnetic energy with the object of impairing 
the use of electronic devices or systems. 

Mark MarkTarget 
To make visible (by the use of light, infrared, laser, 
smoke, etc.) of an object in order to allow its 
identification by another object. 

Move Reposition To change position from one location to another. 

Patrol Patrol To gather information or carry out a security 
mission. 

Rendezvous Rendezvous Achieve a meeting at a specified time and place. 

Sample, biological SampleEnvironment Collect environmental samples for testing for 
biological hazards. 

Sample, chemical SampleEnvironment Collect environmental samples for testing for 
chemical hazards. 

Sample, nuclear SampleEnvironment Collect environmental samples for testing for 
nuclear hazards. 

Search Search To look for lost or unlocated objects or persons. 
Table 4.13.   JC3IEDM Action-Task Activities Incorporated into AVCL as Declarative 

Agenda Goal Types 

 
In addition to their common characteristics, individual goal types may have 

specific parameters unique to that particular type of goal.  A Search goal, for instance, 

must specify the desired probability of detection, whether the datum (the most probable 

location of the object of the search)  is a point or an area (i.e., is the search to focus on the 

centroid of the operating area or to apply equal attention across the entire area), and 

whether the objective of the search is a single or multiple entities.  Additionally, an 

instantiated Search goal can specify one or more search targets.  A Reposition goal, on 



 

93  

the other hand, requires no information beyond that common to all goal types.  A full 

description of the parameters associated with each goal type can be found in Appendix A.  

Parameters for each goal type are intended to provide the information necessary to 

adequately interpret the goal and to support automated plan generation. 

5. Mission Results 
A peripherally related portion of the data model that was developed in parallel 

with task-level and declarative mission specification deals with accumulated mission 

results.  Not surprisingly, different vehicles use different data formats to encode mission 

data such as vehicle telemetry, control settings, and event data.  It can be argued that 

since mission results are not directly relevant to tasking or communications they do not 

need to be included in the proposed common data model.  While this is true to an extent, 

there are also factors that argue for its inclusion.  Most importantly, messages containing 

telemetry and event data are among the most common in inter-vehicle communications so 

these types of data must be included in the model’s communications mechanics.  Thus, it 

is reasonable to define a mission-results data-model subsection and reuse its components 

for message payload (the same approach is utilized for communication of task-level 

behaviors or declarative goals).  On a more subjective level, a vehicle-independent format 

for mission results can facilitate the comparison of results from dissimilar vehicles. 

All mission-results data in AVCL falls into one of two categories:  discrete 

samples of continuous vehicle state information or asynchronous event information.  The 

first category includes vehicle telemetry (position, velocity, etc.) and control settings.  

Data of this sort amounts to a time-stamped snapshot of a continuous data stream 

corresponding to a specific point in time.  The second category consists of events that can 

occur at any time during a mission.  Generated contacts, messages sent and received, and 

systems failures all fall into this category.  Discrete samples of continuous data are 

maintained in a generalized mission results section of an AVCL document while discrete 

event data is maintained in an event log in the same document.  Appendix A provides a 

full description of all potential mission results and mission log content. 

6. Inter-Vehicle Communications 

Inter-vehicle communications is a broad area with significant ongoing research.  

Topics range from networking and data-transmission aspects of autonomous vehicle 
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communications (e.g., ad hoc networks and forward error correction) to more abstract 

topics such as behavior and protocol requirements for cooperation.  Of particular interest 

from the common data model standpoint are the types of messages required to support 

cooperative autonomous vehicle behaviors, since these are the messages that must be 

accounted for in the data model. 

Existing research, encapsulated effectively in the FIPA Communicative Act 

Library Specification, indicates that communicative acts (which take the expressive form 

of messages when applied to autonomous vehicles) between autonomous agents can be 

classified as one of two types:  request or inform.  In fact, all message types within the 

Communicative Act Library Specification are derived from either the request or inform 

base types (FIPA, 02).  Request messages are those that request either information (e.g., 

vehicle state or contact information) or action (e.g., an individual command or an entire 

mission) from the receiving vehicle.  Inform messages, on the other hand, provide 

information such as the sending vehicle’s state or sensor data.  The Communicative Act 

Library Specification rigorously defines the semantics of its 22 acts, but does not 

specifically define the content.  Rather, it provides a wrapper for the content that 

describes how it is to be interpreted.  With the exception of CCL which expresses all 

messages as either command or inform (Komerska, 05), existing autonomous vehicle 

communications schemes do not directly cite the FIPA Communicative Act Library 

Specification, but each of them implicitly utilizes this request / inform model. 

Designed to support a broad array of autonomous agents in addition to 

autonomous vehicles, the 22 messages of the current Communicative Act Library 

Specification provide more functionality than is required to fully exercise the capabilities 

of available and developmental vehicles.  Current autonomous vehicle communication 

schemes, therefore, are not required to implement full library functionality.  In addition 

the syntax and format is not generally utilized in autonomous vehicle messaging.  

Instead, autonomous vehicle communications schemes tend to implement only those 

messages that meet the specific requirements of the envisioned vehicle interactions. 

Concerning the more general messaging requirements of inter-vehicle 

communications, a number of previously cited efforts are relevant.  For instance JAUS 
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and C2L are both designed around the content of their respective message sets.  Worth 

noting in the case of JAUS are the messages of the Query and Inform message classes as 

well as the previously discussed Platform class.  Each of these message classes contain 

Platform, Manipulator and Environment Sensor subgroups.  Further, each message of the 

Platform class subgroups can be correlated with one or more messages in the same 

subgroup of the other classes.  That is, for every Platform class message, there are one or 

more Query Class messages that can be used to request information about the 

commanded parameters and one or more Inform Class messages that are used to provide 

the appropriate information (JAUS, 04-4).  In addition the Query and Inform classes 

contain messages used to request and provide vehicle specifications and capabilities.  The 

JAUS message set fairly clearly illustrates the request-inform messaging model— 

Platform and Query classes form JAUS’ request messages while the Inform Class defines 

its inform messages.  (JAUS, 04-4) 

The C2L specification defines messages for conveying much of the same 

information as JAUS—directive commands and vehicle status.  Messages for requesting 

information are conspicuously absent from the C2L message set.  Messages are available 

for transmitting vehicle state for a number of different vehicle types and also for 

transmitting various types of sensor data, but no message types are included to request 

this information.  Thus, C2L has a somewhat narrower implementation of the request-

inform communications model than JAUS.  Since the conditions upon which inform 

messages are transmitted are defined outside of the scope of C2L, they can vary from 

vehicle to vehicle or operation to operation. 

These two examples, as well as CCL’s use of messaging to command generic 

behaviors and propagate data, make it evident that among the most basic requirements of 

inter-vehicle communications is the ability to exchange command and state information.  

For a multi-vehicle system in which the composition is predefined (e.g., a JAUS system) 

or in which the capabilities of all vehicles are known (e.g., a system of C2L-compliant 

vehicles) the predefined message types are probably sufficient.  On the other hand, they 

will likely prove insufficient for systems consisting of arbitrary vehicles with unknown 

capabilities, or for systems whose composition may change over time.  For these systems, 
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messages will be required to facilitate the discovery of vehicle capabilities as well as the 

formation and maintenance of vehicle groups. 

Among the efforts addressing these aspects of multi-vehicle operations are the 

Meta-Level Organization and Task-Level Organization protocols developed through the 

Cooperative Distributed Autonomous Oceanographic Sampling Networks (CoDA) 

research (Chappell, et al., 97)(Turner and Turner, 04).  CoDA applies a multi-agent 

systems and distributed artificial intelligence approach to the domain of autonomous 

vehicle operations.  In the proposed CoDA system, vehicles self-organize into a Meta-

Level Organization in order to discover resources and design a Task-Level Organization 

to fit the current situation and system composition (Turner and Turner, 04).  Individual 

autonomous vehicles go through protocols to discover, join or leave an existing Meta-

Level Organization, form a Meta-Level Organization if one does not exist, and form a 

Task-Level Organization to accomplish specific tasks.  Inter-vehicle communications are 

used to facilitate Meta-Level Organization and Task-Level Organization formation and to 

maintain synchronization among vehicles as they proceed through their protocols. 

Although the design and implementation of specific CoDA protocols are the 

subjects of ongoing research, a significant portion of the required messaging  capabilities 

are becoming clear.  Not surprisingly, the communications requirements of a system 

along the lines of CoDA include tasking and state messages similar to those available in 

JAUS and C2L.  Also required are a set of messages specific to the tasks of organization 

formation and maintenance.  Specifically, individual vehicles need to broadcast messages 

to locate an existing organization, initiate and conclude organization formation, dissolve 

an organization, or join or leave an existing organization.  Finally, the formation and 

maintenance of autonomous vehicle organizations to support coordination requires 

messages that convey the capabilities of individual vehicles.  The originally proposed 

CoDA protocols utilized has-capabilities and controls-capabilities messages for this 

purpose.  More recently much of the CoDA functionality has been incorporated into CCL 

which conveys vehicle capability with a 36 byte data object that encodes 69 operating 

characteristics that are used to specify operational limits, vehicle physical characteristics 

and installed sensor and navigation systems (Komerska, 05). 



 

97  

Based on this discussion it is possible to itemize the minimum messaging 

requirements for a cooperative autonomous vehicle system (Table 4.14).  The 

requirements can be broken down into five fairly broad categories, each of which can be 

categorized as a request or inform message per the FIPA Communicative Act Library 

Specification.  All of the discussed communications languages define messages that can 

be used to command a vehicle to perform an action or to provide state information about 

a vehicle.  Further, with the exception of C2L, each language provides messages that can 

be used by a vehicle to describe its own capabilities or to request state information from 

another vehicle.  Finally, the languages and protocols that are designed to support 

dynamic cooperative groups require messages to support group maintenance. 

Message Type Description Message Category 
Command the vehicle to perform an action Request (action) 
Request information from the vehicle Request (information) 
Provide vehicle state or event information Inform 
Provide vehicle capabilities information Inform 
Initiate or request cooperative group maintenance action Request (action) 

Table 4.14.   Proposed Minimum Messaging Requirements to Support Multi-Vehicle 
Operations 

 

A significant portion of the messaging capabilities listed in Table 4.14 are defined 

in other portions of the common autonomous vehicle data model defined by AVCL.  The 

constructs required to command vehicle actions are available in the task-level behavior 

and declarative goal portions of the AVCL data-model and constructs required to support 

vehicle state and event information are available in the mission results portion.  It is 

reasonable to reuse these constructs in command and inform message definitions.  Thus, 

definition of specific message types is required only for information requests, group 

maintenance requirements and vehicle capability reporting.  Information requests and 

requests for group maintenance are incorporated into the model as enumerated strings 

that identify the specific type of information or action that is being requested.  Vehicle 

capability reporting is implemented using vehicle-type-specific elements that can be used 

to convey maneuvering limits, physical characteristics and sensor configuration.  A more 

complete summary of the message types available in AVCL is provided in Table 4.15. 
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Message 
Type 

 
Message Content 

 
Implied Message Intent 

Mission 
Specification 

A complete mission (task-level 
behavior sequence or a set of 
declarative goals). 

The sender is requesting that the recipient 
execute the mission. 

Behavior 
Specification 

A single task-level behavior. The sender is requesting that the recipient 
invoke the behavior. 

Group 
Maintenance 

A group initiation or maintenance 
request. 

The sender is attempting to locate, form, 
join or leave a group. 

Information 
Request 

A request for vehicle information. The sender is requesting information from 
the receiver (e.g., vehicle state, sensor 
data or event summary, etc.). 

Vehicle 
Characteristics 

A capabilities summary. The sender is reporting its physical and 
operational characteristics. 

Vehicle State Telemetry or control information. The sender is reporting one or more 
aspects of its current state (location, 
speed, control settings, etc.). 

Sensor Data Sensor information. The sender is providing its most recent 
sensor data. 

Vehicle Event An observable event. The sender is reporting an event (e.g., 
contact report, engineering casualty, etc.). 

Table 4.15.   Message Types Incorporated into the AVCL Schema 

 

C. SUMMARY 
A brief analysis of the differences between ontologies and data models leads to 

the conclusion that the data model proposed and implemented in this research does not 

inherently possess a sufficient degree of semantic richness to be considered an ontology.  

Specifically, it constrains the format of the model, but does not explicitly define the 

nature of the relationships between the various model elements.  Nevertheless it 

constitutes a rigorously defined data model that is sufficient to serve as a vehicle-

independent vocabulary for autonomous vehicle operations. 

The data-model developed in the course of this research defines a set of task-level 

behaviors that are suitable for use with arbitrary vehicles.  They are also suitable as 

building blocks for use in completing more abstract declarative goals.  Appropriate task-

level behavior sequences can be automatically generated to accomplish the goals 

specified in a data-model-compliant declarative mission by either an off-line mission 

planning system or an on-vehicle high-level controller.  In either case, the vehicle-

independence of the task-level behavior sequence makes it suitable for conversion to 

arbitrary vehicle-specific formats.  In addition to both scripted and declarative mission 
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specification, AVCL implements inter-vehicle communications and  mission results.  

Subsequent chapters demonstrate the utility of all AVCL sections in support of arbitrary 

vehicle operations. 
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V. VEHICLE-SPECIFIC LANGUAGE CONVERSIONS 

A. INTRODUCTION 
The discussion to this point has focused on the structure of the exemplar common 

autonomous vehicle data model.  More important than the data model’s design, however, 

is its application to actual vehicles.  In a sense the data model amounts to infrastructure 

that enables the techniques explored in this research to support vehicles of various types.  

This chapter discusses one of the more important capabilities offered by an XML-based, 

common autonomous vehicle data model—automated translation between vehicle-

specific data formats. 

Specifically covered in this chapter is the conversion of five exemplar vehicle-

specific data formats to and from AVCL.  Text-based data formats include mission 

programming languages for the NPS Phoenix UUV, the NPS ARIES UUV, the Naval 

Oceanographic Office Seahorse UUV, and the Hydroid REMUS UUV.  Additionally, the 

compatibility of AVCL with binary vehicle-specific formats is demonstrated through 

translations to and from the platform subgroups of the JAUS Command, Query and 

Inform message classes. 

The JAUS message sets of interest have been discussed in sufficient detail 

previously and do not require further elaboration.  The four text-based data formats, 

however, have not been introduced thus far.  Therefore, the next section provides a brief 

overview of the structure and semantics of each of these data formats.  The remainder of 

the chapter details the specific mechanisms by which AVCL documents are converted to 

and generated from each of the five exemplar formats. 

B. RELATED MISSION PROGRAMMING LANGUAGES 

1. The Phoenix UUV Command and Control 
The Phoenix UUV was a research vehicle designed and built by the NPS Center 

for Autonomous Underwater Vehicle Research.  The Phoenix possessed lateral and 

vertical cross-body thrusters that enabled it to hover in a fixed position, making it unique 

among the UUVs discussed here.  Further differentiating Phoenix from other vehicles to 

which AVCL has been applied is the use of the RBM control architecture with high-level 



 

102 

missions defined in Prolog (Healey, et al., 96).  AVCL compatibility with RBM missions 

defined in Prolog is not a specific goal of this research, although the increasingly 

common use of XSLT to generate program code and the template-based nature of the 

RBM mission planning expert system described in (Davis, 96) provide evidence that they 

are, in fact, compatible (in addition, a proposed extension to the RBM wherein an AVCL 

goal-based declarative mission definition replaces the Prolog definition is the subject of 

Chapter VII).  The discussion in this chapter focuses on the application of AVCL to the 

behavior definition language that formed the underpinning of the original RBM 

(Brutzman, 94) (Davis, 96). 

Although the Phoenix UUV is no longer operational, its command language was 

chosen as an AVCL conversion target for a number of reasons.  First, the mapping 

between this language and AVCL is fairly straightforward making it a good candidate for 

the first target language.  Additionally, the Phoenix tasking language is the only 

behavior-based language for which AVCL translations have been developed.  Finally, 

since the Phoenix command language was designed within the context of a multi-layer 

control architecture, successful conversion between AVCL and the Phoenix command 

language serves to demonstrate the applicability of a common data model to vehicles 

utilizing various control architectures. 

At the execution level, a Phoenix mission specification takes the form of a 

behavior script.  Individual behaviors are defined by a keyword and a parameter list (a 

summary of the most common behaviors is provided Table 5.1).  The keyword identifies 

the type of behavior being initiated.  The number of parameters associated with the 

behavior determines how the individual parameters are interpreted.  For example the 

waypoint behavior has four potential parameter arrangements:  Cartesian coordinates, 

depth, propeller revolutions per minute during transit, and standoff distance; Cartesian 

coordinates, depth and standoff distance; Cartesian coordinates and depth; or just 

Cartesian coordinates.  Behavior initiation and termination is handled in a manner similar 

to that used to control the activation and deactivation of AVCL task-level behaviors—

activation is based on the preceding behavior type while termination is based on the 

activated behavior type. 
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Behavior 
Name 

 
Description 

 
Parameters 

Depth Set vehicle's commanded depth. Commanded depth 
GPS Obtain a GPS fix. None 

Heading Set vehicle's commanded 
heading. Commanded heading 

Hover 

Command the vehicle to 
proceed to a specified 
geographic location and hover 
there. 

Cartesian X coordinate of the destination 
Cartesian Y coordinate of the destination 
Commanded depth at hover point (optional) 
Heading to maintain during hover (optional) 
Standoff distance from destination (optional) 

Lateral Activate lateral body thrusters to 
slide sideways. Commanded lateral thruster voltage 

Mission-Script 
 

Replace the currently executing 
mission script with a new one. Path to the new mission script file 

Planes Open loop horizontal planes 
deflection command. Commanded plane deflection 

Position Set the vehicle's internally 
maintained position. 

Cartesian X coordinate 
Cartesian Y coordinate 
Depth (optional) 

Quit End the mission and shut down. None 

Rotate Activate lateral body thrusters to 
rotate about the vehicle's Z axis. Commanded lateral thruster voltage 

RPM Set ordered propeller 
revolutions per minute. 

Both or left propeller revolutions per minute 
Right propeller revolutions per minute  
     (optional) 

Rudder Open loop rudder deflection 
command. Commanded rudder deflection 

Thrusters-Off Disable cross-body thrusters. None 
Thrusters-On Enable cross-body thrusters. None 

Wait Continue current behavior for a 
specified period of time. 

Time to wait before commencing the next 
behavior 

Wait-Until Continue current behavior until 
the specified time. 

Clock time at which to commence the next 
behavior 

Waypoint 
Command the vehicle to 
proceed to a specified 
geographic location. 

Cartesian X coordinate of the destination 
Cartesian Y coordinate of the destination 
Commanded depth at destination (optional) 
Revolutions per minute to use during transit 
     (optional) 
Standoff distance from destination (optional) 

Table 5.1.   Selected Phoenix UUV Behaviors (After:  Davis, 96) 

 

2. ARIES UUV Mission Specification 
The follow-on vehicle to the NPS Phoenix is the NPS ARIES UUV and this 

vehicle is currently the primary research platform of the NPS Center for AUV Research.  

Although similar in many regards to the Phoenix, ARIES has numerous navigation, 

sensor, electronic and computational system upgrades (Nicholson, 04).  Additionally, 
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ARIES no longer has cross-body thrusters installed so it is not currently capable of 

hovering at a fixed position.  Most relevant from the standpoint of this research is that 

ARIES no longer utilizes the RBM control architecture as described in (Byrnes, 93).  

Rather, for most operations ARIES missions take the form of a simple waypoint script 

(Marco, 01). 

From a conceptual standpoint, an ARIES waypoint list is the simplest mission 

specification format to which AVCL has been applied.  The first line in the mission file 

consists of a single integer value that identifies the number of waypoints the vehicle is to 

execute.  Each subsequent line contains 11 white-space-delimited numerical fields that 

describe a single waypoint.  Individual fields specify the location of the waypoint, 

describe the vehicle’s control modes en route, and define how much time the vehicle is 

allotted to successfully reach the waypoint (the content description of each field is 

provided in Table 5.2).  The vehicle transits to waypoints in the order in which they are 

specified and does not begin transiting to a new waypoint until the preceding waypoint 

has been reached.  Failure to arrive at any waypoint within the allotted time is a mission 

abort criteria and causes the vehicle to terminate the mission and surface. 

Field Description 
1 Cartesian X coordinate of the waypoint (meters) 
2 Cartesian Y coordinate of the waypoint (meters) 
3 Left screw commanded speed (volts) 
4 Right screw commanded speed (volts) 
5 Vertical control mode flag: 0=Depth Control, 1=Altitude Control 
6 Commanded altitude during transit (meters) 
7 Commanded depth during transit (meters) 
8 Perform a GPS popup during transit: 0=No, 1=Yes 
9 Duration of GPS popup if commanded (seconds) 

10 Watch radius (i.e., how close to the waypoint is good enough) (meters) 
11 Maximum time allotted to reach the waypoint (seconds) 

Table 5.2.   Field Descriptions for Individual Entries of an ARIES Waypoint List   
(From:  Marco, 01) 

 
Given that a goal of the common data model is to capture the semantics of 

common autonomous vehicle operations in the task-level-behavior set, it is not surprising 

that the representation of ARIES waypoint scripts with AVCL is not difficult—transit 

between waypoints is, after all, one of the most frequently required autonomous vehicle 
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tasks.  The self-contained nature of each waypoint (a byproduct of their specification as 

tasks vice behaviors) introduces a number of issues during the translation process 

(particularly when converting AVCL task-level behavior scripts to ARIES waypoint lists.  

Various techniques have evolved over the course of this research to facilitate the process 

which are discussed in detail later in this chapter. 

3. Seahorse UUV Task Set 
The Seahorse UUV is a long-endurance, oceanographic survey vehicle designed 

and built by the Pennsylvania State University Advanced Research Laboratory and 

operated by the Naval Oceanographic Office (Peterson and Head, 02).  The Seahorse 

possesses control, navigation and sensor capabilities similar to those of ARIES, but uses 

its own command language to define mission scripts.  Consisting of the six task types 

listed in Table 5.3, the Seahorse command language arguably provides more control than 

ARIES waypoint descriptions.  It is, however, still a task-scripting language in which a 

new task is not initiated until the preceding task has completed. 

Task Type Description 

Launch Causes the vehicle to submerge and start the propulsion motor.  Always 
the first order of a valid mission. 

Waypoint 
Navigation 

Directs the vehicle to transit from the current location to a specified new 
location. 

GPS Fix Directs the vehicle to surface, acquire a GPS fix, and return to the 
previously ordered depth or altitude above the bottom. 

Station Keep Directs the vehicle to maintain a circular holding pattern about a specified 
destination for a specified period of time. 

Surface Comms Directs the vehicle to surface at the current location for communications 
purposes. 

Rendezvous Directs the vehicle to proceed to a specified recovery position.  Always the 
last order of a valid mission. 

Table 5.3.   Seahorse UUV Task Set (After:  NAVO, 04) 

 
In addition to providing more task types than ARIES, the Seahorse command 

language is more complex from a syntactic standpoint.  Each task has a number of 

parameters and options that dictate how the task is to be accomplished.  Further, 

positions, distances and speeds can each be specified in a number of ways.  Keywords are 

used to indicate the parameters and units as shown in the example station-keeping order 

of Figure 5.1.  The example demonstrates the use of parameter-type keywords (to the left 

of the ‘:’ on each line) to specify the purpose of a given parameter (e.g., the latitude at 
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which to maintain station specified in the third line) with the parameter value following 

the parameter-type keyword.  Additional keywords are used to specify the parameter 

units if applicable.  The transit altitude and loiter depth of the example, for instance, are 

specified in meters, but the language permits their specification in feet as well.  Other 

tasks use the same parameter-type / parameter-value pattern and in many cases one 

parameter type can be substituted for another (e.g., the transit altitude of Figure 5.1 can 

alternatively be specified as a transit depth). 

Valid Seahorse mission files always begin with a launch order and finish with a 

rendezvous order, so for all practical purposes, there are only four order types available 

for general use—navigate to a waypoint, travel to and maintain a station, obtain a GPS 

fix and surface for communications.  All of these tasks are easily expressed with AVCL 

task-level behaviors.  As is the case with ARIES waypoints, however, each task is self 

contained which necessitates the use of similar programming patterns to convert Seahorse 

command files to and from AVCL task-level behavior scripts. 

 
Figure 5.1.   An Example Seahorse UUV Station Keeping Order (After:  NAVO, 04) 

 

4. The REMUS UUV Objective Set 

Of the vehicle-specific data formats to which AVCL has been applied, the 

command language of the REMUS family of UUVs is the most structurally complex.  

The complexity arises from the use of references within mission objectives, multiple 

methods for specifying locations, and the requirement to designate the locations of at 

least two navigation transponders. 

A REMUS mission file consists of a series of locations followed by a series of 

objectives.  Locations are used to specify the geographic positions of navigation 

 
 Start_Order    : Station_Keep_Order 
 Scheduling_Info_Is_Timed : False 
 Destination_Latitude  : 28.1 Degrees 
 Destination_Longitude  : 88.1 Degrees 
 Until_when    : 90.0 Minutes 
 Transit_Altitude   : 10.0 Meters 
 Loiter_Depth    : 15.0 Meters 
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transponders and also to define locations that can be referenced later in the file.  Each 

position definition contains the “[Location]” keyword, a type, a label, and the geographic 

position.  Locations defining transponder locations are assigned a type corresponding to 

the transponder.  All other locations are assigned a type of “waypoint.”  The actual 

position can be specified using latitude and longitude or a reference to a previously 

defined position and can include an offset as well (i.e., a location can be defined relative 

to an existing location).  The end of the location section of the mission file is designated 

by an empty location (i.e., a location with a waypoint type but no position). 

Each objective in the mission file begins with the “[Objective]” keyword and its 

type (available objective types are listed in Table 5.4).  REMUS objective definitions are 

similar to Seahorse tasks in that each objective description uses parameter-keyword / 

parameter-value pairs to describe the objective and how its execution is to proceed.  

Objectives with geographic parameters can reference locations from the locations portion 

of the mission file or define their own locations (and may utilize an offset from another 

position as well). 

 
Objective 

Type of 
Command 

  
Description 

Set Position Initialization Set the vehicle starting latitude and longitude (must be 
the first objective of the mission). 

Wait Depth Mission Start Waits until the vehicle is deeper than a depth before 
commencing the mission. 

Wait Prop Mission Start Waits for the vehicle's prop to be spun before 
commencing the mission. 

Wait Run Mission Start Waits until a run command is received before 
commencing the mission. 

Wait Magnet Mission Start Waits until the magnet is removed from a vehicle sensor 
before commencing the mission. 

Navigate Waypoint Navigates to a waypoint using the best method. 
Dead Reckon Waypoint Navigates to a waypoint by dead reckoning. 
Transponder 
Home Waypoint Uses a transponder to home the vehicle to a specified 

position. 

Navigate Rows Waypoint 
(multiple) Directs a lawn-mowing pattern of waypoints. 

Surface Miscellaneous Surfaces the vehicle at the end of a mission. 
Compass Cal Miscellaneous Performs an in-water compass calibration. 

Include Miscellaneous Includes an external mission file into the currently 
executing mission. 

End Miscellaneous Uses to indicate the end of a mission. 
Table 5.4.   REMUS UUV Objective Types (After:  Hydroid, 02) 
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Each mission begins with a set position objective (and in most cases one of four 

mission start objectives) and concludes with an end objective (probably immediately 

preceded by a surface objective).  This leaves six objective types that are used to define 

the bulk of most missions.  Three of these are used to define a single waypoint (with the 

navigate objective being the preferred type since it allows the vehicle to dynamically 

choose the best navigation method).  A fourth provides a way of defining a complete 

waypoint pattern with a single objective. 

Despite the syntactic complexity, REMUS missions are executed as task scripts 

and are semantically similar to the mission files of the ARIES and Seahorse vehicles.  In 

this regard the REMUS objective set is largely compatible with AVCL’s task-level 

behaviors and the same programming patterns as with ARIES and Seahorse missions are 

applicable.  On the other hand, the language contains a number of tasks that are unique to 

the REMUS family of vehicles that require special handling in the conversion process. 

C. TEXT-BASED VEHICLE-SPECIFIC DATA FORMATS 

1. Generation of Vehicle-Specific Documents from Data-Model-
Compliant XML 

a. Introduction 
As discussed in Chapter III, XSLT is the mechanism of choice for 

converting XML data to other text-based formats so its use in converting AVCL to 

vehicle-specific formats is not surprising.  The programming pattern used in XSLT 

stylesheets that process AVCL documents involves the implementation of a template for 

each AVCL element that correlates to the target data format—most frequently in the case 

of AVCL, the task-level behaviors.  Depending on the characteristics of the specific 

behavior and those of the target data format, template actions might include the 

generation of vehicle-specific commands or simply the update of command parameters 

for use during subsequent behavior processing.  For instance, all of the vehicle-specific 

languages discussed here define some form of waypoint command that can be used to 

direct the vehicle to specific geographic positions.  Regardless of  the target language, it 

is appropriate for the stylesheet’s Waypoint-behavior template to generate a vehicle-

specific waypoint command.  On the other hand, only the Phoenix command language 

includes unique behaviors ordering depth below the surface or altitude above the bottom.  
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Rather, command parameters of this type are typically embedded within the vehicle-

specific waypoint command.  Stylesheets targeted to most vehicle-specific formats, 

therefore, utilize templates for the MakeDepth or MakeAltitude behaviors that update 

commanded depth or altitude for future use but do not generate output. 

b. Conversion of AVCL for the  Phoenix UUV 
The first vehicle-specific language for which an XSLT stylesheet was 

implemented is the behavior-scripting language of the Phoenix UUV.  Of the languages 

for which mappings to and from AVCL have been developed, Phoenix behavior scripts 

are the most semantically similar to AVCL task-level behavior scripts.  Phoenix behavior 

activation and termination is handled in a manner similar to AVCL task-level behaviors 

and individual Phoenix behaviors are often similar enough in function to AVCL 

behaviors to enable a one-to-one mapping between the two languages.  Of the 19 AVCL 

task-level behaviors listed in Table 5.5, 15 can be mapped to a single Phoenix behavior 

(column two of the table).  The other four are mapped to a primary Phoenix behavior but 

may require the use of one or more additional Phoenix behaviors (listed in the third 

column of Table 5.5) to fully express their content. 

AVCL Task-Level 
Behavior 

Associated 
Phoenix Behavior 

Possible Additional Required 
Phoenix Behaviors 

CompositeWaypoint Waypoint (multiple) Depth, RPM, GPS, Standoff 
GpsFix GPS None 
Hover Hover Depth, Heading, GPS, Standoff 
Loiter Waypoint Depth, RPM 
MakeDepth Depth None 
MakeHeading Heading None 
MakeSpeed RPM None 
MakeKnots RPM None 
MissionScript Mission-Script None 
MoveLateral Lateral None 
MoveRotate Rotate None 
Quit Quit None 
SetPlanes Planes None 
SetPosition Position None 
SetPower RPM None 
SetRudder Rudder None 
Wait Wait None 
WaitUntilTime Wait-Until None 
Waypoint Waypoint Depth, RPM, GPS, Standoff 

Table 5.5.   A Partial Mapping of AVCL Task-Level UUV Behaviors to Phoenix UUV 
Behaviors 
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The similarity between AVCL task-level behavior scripts and Phoenix 

behavior scripts greatly simplifies the AVCL-to-Phoenix translation stylesheet.  Most 

significantly, since individual behaviors do not necessarily override all previously 

ordered control parameters (e.g., a new depth can be ordered without affecting the 

ordered speed or heading), there is no requirement to maintain control parameter 

information outside the scope of an individual template.  Stated differently, templates are 

completely self contained—their output is not affected by previously invoked templates 

and they do not influence subsequently invoked ones. 

Translation of  AVCL task-level behaviors amounts to the generation of 

one or more Phoenix behaviors that command the actions specified by the AVCL 

behaviors.  AVCL behaviors such as MakeDepth are translated into a single Phoenix 

behavior (column two of Table 5.5).  AVCL behaviors that potentially affect multiple 

control parameters are often handled differently.  The AVCL Waypoint behavior, for 

example, can be used to specify not only a destination position, but the depth of the 

waypoint, the speed of transit and how close the vehicle must get to the destination (an en 

route GPS fix can be ordered as well).  While the Phoenix Waypoint behavior is capable 

of commanding speed, depth and standoff distance as well, it cannot do so in arbitrary 

combinations (e.g., a transit speed can be commanded only if a depth is commanded as 

well).  Given the various control parameter combinations that can be ordered by a single 

AVCL Waypoint behavior, it is more appropriate to use the Phoenix Waypoint behavior 

to specify only the horizontal location of the destination.  Other control parameters 

specified in the AVCL behavior are converted to Phoenix behaviors that immediately 

precede the Waypoint behavior.  Since the Phoenix behavior activation scheme calls for 

immediate activation of the behavior immediately following a Depth, RPM or GPS-Fix 

behavior, this behavior sequence is effectively equivalent to a single behavior 

encapsulating all parameters.  The AVCL Waypoint behavior in Figure 5.2, for instance, 

is translated to a sequence of Phoenix behaviors specifying the transit depth and transit 

speed prior to the waypoint command. 

Also illustrated in Figure 5.2 are the implementation of unit conversions 

within the XSLT stylesheet.  The units used to specify the Cartesian coordinates and 

depth of the AVCL waypoint (meters) are converted to feet as required by Phoenix and 
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the propeller power of 75 percent is converted to an actual revolutions per minute value.  

While these particular conversions are easily accomplished with XSLT, they do highlight 

a potential unit conversion problem.  AVCL allows positions to be specified using either 

Cartesian coordinates in an earth-fixed coordinate frame (with the origin located at a 

geographic position specified using a GeoOrigin element), a relative position (Cartesian 

coordinates in an earth-fixed coordinate  system located at the current vehicle position) or 

latitude and longitude.  Phoenix, on the other hand, accepts only Cartesian coordinates.  

Two methods are commonly utilized by applications requiring this type of geographic 

data processing.  If a high degree of accuracy is required or applications work with actual 

cartographic products, Geographical Information System support is often required.  On 

the other hand, many applications (including many autonomous vehicles and vehicle 

planning systems) directly implement formulas that provide the requisite level of 

accuracy without the overhead or cost of a Geographical Information System.  

Unfortunately, XSLT processors do not have inherent access to an installed Geographical 

Information System and XPath does not have built-in trigonometric functions required to 

implement conversions within the stylesheet. 

 
Figure 5.2.   An AVCL Waypoint Behavior and an Equivalent Phoenix UUV Behavior 

Sequence Automatically Generated from an XSLT Stylesheet 

 

The solution to this potential shortcoming is the use of XSLT extensions 

that provide access to methods and programs written in other languages that implement 

 
AVCL Task-Level Behavior: 
<Waypoint> 
  <XYPosition x="200.0" y="50.0"/> 
  <Depth value="12.0"/> 
  <SetPower> 
     <AllPropellers value="75.0"/> 
  </SetPower> 
</Waypoint> 
 
Phoenix Behavior Sequence: 
DEPTH    39.525612 
RPM      525 
WAYPOINT 658.7602 164.69005 
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functionality not directly available in XSLT.  Computation of Cartesian coordinates 

within the AVCL processing stylesheets developed during this research, for instance, 

relies on Equations 5.1 and 5.2 where R is the equatorial radius of the earth in meters and 

Lat0 / Lon0 is the geographic position of the Cartesian coordinate frame origin.  These 

functions are implemented as static Java methods that are accessed from within the XSLT 

stylesheets as required.  Alternatively, the same extension mechanism might be utilized to 

access Geographical Information System functionality for increased accuracy or 

advanced geographic processing. 
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To summarize, XSLT stylesheet templates can typically map instances of 

AVCL task-level behaviors to a single Phoenix behavior.  In some cases, more than one 

Phoenix behavior is utilized to accurately capture the semantics of an AVCL task-level 

behavior.  Regardless of the number of behaviors required, XSLT stylesheet templates 

that process AVCL task-level behaviors are self contained in that they neither rely on the 

outcome of previously invoked templates nor influence the execution of subsequently 

activated templates. 

c. Conversion of AVCL for the ARIES UUV 
In many respects ARIES UUV waypoint lists are the simplest target data 

format for AVCL task-level behavior scripts.  After all, they consist of little more than a 

series of identically formatted numerical sequences.  In fact the AVCL Waypoint 

behavior template is the only one in the AVCL-to-ARIES stylesheet that actually 

generates output.  The templates for all other behaviors simply update commanded 

control parameters. 

There is, however, a significant difficulty imposed by the self-contained 

nature of ARIES waypoints—XSLT’s lack of side effects (particularly the immutability 

of XSLT variables) might seem to preclude the use of templates to update command 

parameters for later use.  The common iterative pattern used in XSLT stylesheets does 

not retain information from iterative step to iterative step.  If a series of AVCL task-level 
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behaviors is processed using normal XSLT iteration, control parameter information from 

one behavior is not retained for use by templates processing subsequent behaviors.  If a 

MakeDepth behavior is encountered, the commanded depth is not ordinarily retained 

outside of the original MakeDepth XSLT template and is therefore not available when a 

Waypoint behavior is encountered.  In this case the generated waypoint command will 

not accurately reflect the intent of the AVCL task-level behavior script. 

This difficulty was overcome through the development of an XSLT 

programming pattern that achieves the functionality of mutable variables using XSLT 

template parameters.  Parameter values are updated as a document is processed by 

explicitly controlling iteration rather than utilizing XSLT’s default iteration model.  

Described in pseudocode in Figure 5.3, the simulated mutable variable algorithm 

intentionally applies templates one at a time.  This differs significantly from the more 

common pattern which relies on the XSLT processing engine to apply templates to 

multiple elements matching a single XPath expression.  At the top level, the stylesheet 

applies the appropriate template for the first task-level behavior.  All potentially mutable 

variables are included in the initial template application as parameters with default 

values.  Templates then instantiate internally immutable variables corresponding to each 

parameter and assign values to variables based on the content of the behavior element 

being processed.  Variables corresponding to parameters whose value is updated by the 

task-level behavior being processed are set to the new value.  For all others the existing 

parameter value is used.  After generating any required output, the template invokes the 

appropriate template for the current element’s next sibling.  The variables instantiated by 

the current template are used as the parameters to the next template.  In this way task-

level behaviors are processed in order and information is maintained and updated along 

the way. 

Using this new mutable-variable pattern, the templates for AVCL 

behaviors such as MakeDepth, MakeAltitude, ObtainGPS, SetPower and MakeSpeed 

update their respective command parameter without affecting others.  In the AVCL-to-

ARIES translation stylesheet, seven of the 11 ARIES waypoint fields listed in Table 5.2 

are directly or indirectly maintained in this manner.  Exceptions are the Cartesian 

coordinates that are specified in the Waypoint behavior, and the waypoint time out and 
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GPS popup duration which are computed during translation based on the current vehicle 

state.  The most recently ordered horizontal position is maintained as well, so that the 

waypoint time out values can be automatically generated and the actual location of 

positions described in relative terms can be determined. 

 
Figure 5.3.   Algorithm for Achieving Mutable Variables in XSLT using Template 

Parameters and Explicitly Controlled Iteration 

 
Also worth noting is the use of XSLT to detect mission programming 

errors and mission-vehicle incompatibilities.  Despite the intended application of AVCL 

to arbitrary vehicles, it is not difficult to define an AVCL mission that cannot be executed 

on a specific vehicle.  The ARIES, for instance, is not hover-capable, so AVCL task-level 

behavior scripts that include Hover behaviors are not compatible with the ARIES.  The 

Hover template in the AVCL-to-ARIES stylesheet is used to identify the incompatibility 

and notify the operator so that corrections can be made before the script is used with an 

actual vehicle.  Other common incompatibilities include the attempted use of open-loop 

or closed-loop / open-ended behaviors.  In some cases errors of this sort are not only 

detectable but may also be correctable by the stylesheet through the use of dead 

reckoning to convert closed-loop / open-ended behaviors to waypoints. 

 
begin XSLT processing 
     variable B1 = the first task-level-behavior 
     apply template for B1  
          with default parameters d1 to dn 
end XSLT processing 
 
begin template for task-level-behavior Bi  
     with parameters p1 to pn 
     for k = 1 to n 
          variable vk 
               if Bi updates pk 
                    vk = new_pk 
               else 
                    vk = pk 
     generate required output for Bi  
     apply template for Bi+1  
          with parameters v1 to vn 
end template 
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Despite the apparent simplicity of ARIES waypoint lists, their generation 

from AVCL task-level behavior scripts using XSLT is not as straightforward as it might 

initially appear.  The immutability of XSLT variables and the existence of AVCL 

behaviors that are not compatible with the ARIES vehicle are both issues that must be 

dealt with.  These issues, however do not inhibit the applicability of the proposed 

common data model to express ARIES waypoint lists.  Ultimately, the correlations shown 

in Figure 5.4 are used to map content from AVCL task-level behaviors to the ARIES 

UUV waypoint fields. Solid lines indicate task-level behavior content that is mapped for 

every instance of that particular behavior—that is, content that is always present and 

therefore always used in the next generated waypoint.  Dashed lines, on the other hand, 

indicate mappings that apply only if the relevant optional content is present in the task-

level behavior. 

 
Figure 5.4.   Data Mappings from AVCL Task-Level Behaviors to ARIES UUV 

Waypoint Fields 
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d. Conversion of AVCL for the Seahorse UUV 
Like ARIES missions, Seahorse UUV missions take the form of a 

command script wherein each task is completely self contained.  This implies that  many 

of the translation issues and their means of resolution are similar to those of ARIES.  In 

particular, the simulation of mutable variables along with the detection (and possible 

correction) of mission programming errors described in the preceding section are both 

used extensively in the AVCL-to-Seahorse translation stylesheet.  Additionally since 

Seahorse uses latitude and longitude to specify absolute positions and Cartesian 

coordinates for relative positions the previously discussed XSLT extension mechanism is 

used to implement Equations 5.3 and 5.4 for the purpose of converting AVCL Cartesian 

positions for use by Seahorse. 
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This is not to say that XSLT stylesheets which translate AVCL for the 

Phoenix and ARIES vehicles encountered and resolved all issues required for the 

successful translation of AVCL for the Seahorse.  On the contrary, the Seahorse scripting 

language poses several unique challenges.  In particular, despite the fact that ARIES 

commands are inherently different than AVCL task-level behaviors, they are designed to 

control similar aspects of vehicle action in a similar fashion.  Seahorse tasks, on the other 

hand, do not necessarily operate in the same way, often packaging implied vehicle 

actions differently.  The GPS Fix order, for example, has a Return to Starting Point 

parameter that can be used to direct the vehicle to return to the previous waypoint upon 

obtaining the fix.  In some cases Seahorse tasks imply vehicle actions that do not directly 

correspond to AVCL task-level behaviors (e.g., surface for the specific purpose of 

communicating).  Other tasks include implicit data-gathering instructions (e.g., the 

Collect SVP parameter of the Surface Comms order that can direct the vehicle to collect 

sound velocity profile data while surfacing).  All of these situations must be accounted 

for in a stylesheet intended to generate Seahorse scripting language. 
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In some cases a default value can be used (e.g., it might be acceptable to 

always order the vehicle to collect the sound speed profile while surfacing).  In others the 

organization of the AVCL task-level behavior script can be used to implicitly handle the 

situation in an acceptable way.  Figures 5.5 and 5.6 provide an example resolution of this 

issue.  Figure 5.5 depicts an AVCL behavior sequence ordering the vehicle to transit to a 

waypoint, surface for one minute and return to the previous waypoint.  The most concise 

way for a Seahorse script to express this is to use a Waypoint Navigation order followed 

by a Surface Comms order with the Return to Starting Point parameter set to true.  

However, generation of this sequence from the XSLT stylesheet requires an explicit 

check to see if the MakeDepth and Wait behaviors are immediately followed by a 

Waypoint returning the vehicle to the previous point.  It is simpler to set the Return to 

Starting Point parameter to false for all Surface Comms tasks and process the subsequent 

Waypoint separately.  This results in the Seahorse task sequence depicted in Figure 5.6 

which commands the desired behavior.  This pattern allows for a simpler stylesheet since 

it can effectively ignore issues that might otherwise require significant special handling.  

 
Figure 5.5.   An AVCL Task-Level Behavior Sequence Ordering a UUV to Proceed to a 

Waypoint, Surface, and Return to the Previous Waypoint and Depth 

 
<Waypoint> 
  <LatitudeLongitude  
    latitude="30"  
    longitude="-118"/> 
  <Depth value="12"/> 
  <SetPower> 
     <AllPropellers value="75"/> 
  </SetPower> 
</Waypoint> 
<MakeDepth value="0"/> 
<Wait value="60"/> 
<Waypoint> 
  <LatitudeLongitude  
    latitude="30"  
    longitude="-118"/> 
  <Depth value="12"/> 
</Waypoint> 
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Figure 5.6.   An XSLT-Generated Seahorse UUV Task Sequence Equivalent to the 

Task-Level Behavior Sequence of Figure 5.5 

 
Unfortunately, not every Seahorse task construct can be dealt with 

implicitly or through the use of defaults, so it is often necessary to perform tests on the 

neighbor, ancestor and descendant elements in order to resolve the output requirements of 

the current element.  It is often possible to infer the proper interpretation of an element 

from the neighboring task-level behaviors as is the case for the Waypoint behavior.  

Since the last task in a Seahorse mission must be the rendezvous order, if a Waypoint 

behavior has no following Waypoint siblings, it is translated as a rendezvous order.  

Otherwise it is translated as a Waypoint Navigation order.  In a similar fashion, the 

siblings of a MakeDepth behavior with a value of zero can be checked to determine 

whether it is to be interpreted as a Surface Comms order (if the behavior is immediately 

 
Start_Order              : Waypoint_Navigation_Order 
Scheduling_Info_Is_Timed : False 
Destination_Latitude     : 30 Degrees 
Destination_Longitude    : -118 Degrees 
Transit_Mode             : Steer_to_Line 
Transit_Depth            : 12 Meters 
Transit_Speed_In_Water   : 5.25  
Use_SSS                  : True 
 
Start_Order              : Surface_Comms_Order 
Scheduling_Info_Is_Timed : False 
Collect_SVP              : True 
Return_to_Depth          : False 
Return_to_Starting_Point : False 
Take_GPS_Fix             : False 
Perform_RF_Comms         : True 
 
Start_Order              : Waypoint_Navigation_Order 
Scheduling_Info_Is_Timed : False 
Destination_Latitude     : 30 Degrees 
Destination_Longitude    : -118 Degrees 
Transit_Mode             : Steer_to_Line 
Transit_Depth            : 12 Meters 
Transit_Speed_In_Water   : 5.25  
Use_SSS                  : True 
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followed by a Wait, WaitUntilTime or SendMessage behavior), whether a GPS Fix is to 

be taken while on the surface (if there are no sibling behaviors that will direct the vehicle 

to submerge between the MakeDepth behavior and a GpsFix behavior), or whether a 

rendezvous order is to require a GPS fix at the destination (when the last Waypoint 

behavior in the AVCL task-level behavior script has a following GpsFix behavior). 

A few aspects of some Seahorse orders cannot be inferred from other 

behaviors in the AVCL script, so more interpretation is required to accurately translate 

AVCL behavior scripts for the Seahorse.  For example, the Surface Comms order can 

either allow or disallow the use of radio frequency communications.  While it may make 

sense to always allow radio communications, this comes at the expense of sacrificing 

vehicle capabilities.  The same can be said of the ability to order the vehicle to collect 

sound velocity profile data while surfacing.   

In order to deal with data format elements that are truly vehicle-specific, 

the AVCL task-level behavior set includes a MetaCommand behavior.  This behavior has 

no direct effect on any vehicle control parameters, so it can often be ignored during 

translations.  It does, however, provide a means of capturing vehicle-specific information 

that is not representable in other AVCL structures.  XSLT stylesheets translating AVCL 

check the name and content attributes of  MetaCommand behaviors to determine if they 

relate to the stylesheet’s target language and adjust their processing accordingly.  For 

instance, a MetaCommand behavior with a name attribute value of “obtainSVP” tells the 

AVCL-to-Seahorse stylesheet how to set the Collect SVP parameter of the next Surface 

Comms order (based on the value of the MetaCommand behavior’s content attribute).  

Stylesheets targeted to vehicles other than Seahorse will ignore the MetaCommand 

behavior.  If the stylesheet does not encounter the  MetaCommand behaviors relating to 

its target data format before generating the content to which they apply, the stylesheet can 

still use default values (“true” for both the Perform Radio Frequency Comms and Collect 

SVP parameters of the Seahorse Surface Comms order).  The MetaCommand name 

attribute values that the AVCL-to-Seahorse stylesheet supports and their corresponding 

meanings are listed in Table 5.6. 
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Name Attribute 
Value 

Possible Content 
Attribute Values 

 
Description 

useSSS true or false The value of the next Waypoint Navigation order's   
Use SSS parameter. 

rfComms true or false The value of the next Surface Comms order's Perform 
RF Comms parameter. 

obtainSVP true or false The value of the next Surface Comms or GPS Fix 
order's Collect SVP parameter. 

rendezvous [no value] Indication that the next Waypoint behavior is to be 
interpreted as the last one. 

Table 5.6.   AVCL MetaCommand Name Attribute Values Used by the XSLT Stylesheet 
Targeted to the Seahorse UUV Tasking Language 

 
Data mappings used in the translation of AVCL task-level behaviors to 

Seahorse UUV orders are depicted in Figures 5.7 through 5.9.  As with Figure 5.4, solid 

lines represent mappings from required task-level behavior content to the target Seahorse 

orders while dashed lines indicate mappings of optional content.  Since a large variety of 

task-level behavior content is potentially mappable to multiple Seahorse tasks, the actual 

mapping utilized for a particular task-level behavior depends upon the type of Seahorse 

order that is required.  In many cases data is saved for use in the next generated Seahorse 

order.  In other cases the context of the particular behavior (i.e., the types and content of 

neighboring behaviors) dictates the immediate generation of a particular Seahorse order.  

Regardless, the most current data is always used for any Seahorse order that is generated. 

 
Figure 5.7.   Data Mappings from AVCL Task-Level Behaviors to the Seahorse UUV 

Waypoint Order 
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Figure 5.8.   Mappings from AVCL Task-Level Behaviors to Seahorse GPS Fix, Surface 

Comms and Station Keep  Orders 

 

 
Figure 5.9.   Mappings from AVCL Task-Level Behaviors to the Seahorse Rendezvous 

Order 
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The syntax of the Seahorse UUV tasking language is significantly more 

complex than those of the Phoenix and ARIES vehicles.  Nevertheless, an XSLT 

stylesheet can be designed to translate AVCL task-level behavior scripts for the Seahorse 

UUV.  The implementation of more robust content checks within the stylesheet and the 

use of the AVCL MetaCommand to capture information specific to the Seahorse vehicle 

facilitates accurate translation despite the increased complexity of the target language. 

e. Conversion of AVCL for the REMUS UUV 
Despite its increased complexity, the REMUS command language does 

not pose any specific translation difficulties whose ultimate resolution method has not 

already been discussed.  In fact this is not surprising since the REMUS command 

language is a task scripting language with identical execution semantics to ARIES 

waypoint lists and Seahorse task scripts (i.e., tasks are executed in order and do not 

commence until the preceding task completes).  Additionally, many of the 13 available 

REMUS objectives are similar enough to allow their generation by the same XSLT 

stylesheet templates (e.g., there are three REMUS waypoint objectives, and four mission-

start objectives).  The translation of AVCL task-level behavior scripts for the REMUS 

vehicle differs only by the increased use of the XSLT mutable-variable pattern, behavior-

context checking, and AVCL MetaCommand behaviors. 

 MetaCommand behaviors, in particular, play an increased role in the 

AVCL-to-REMUS stylesheet and is summarized in Table 5.7.  As with the AVCL-to-

Seahorse stylesheet,  MetaCommand behaviors are used to indicate the values of vehicle-

specific REMUS command parameters.  Unlike the Seahorse command language, 

however, the REMUS language contains not only vehicle-specific objective parameters, 

but vehicle-specific objectives as well.  There is, for example, no AVCL task-level 

behavior that can capture the semantics of the REMUS Wait Prop objective.  Five of the 

13 objective types of Table 5.7 do not translate meaningfully into AVCL task-level 

behaviors, but it is a natural extension of the previous MetaCommand use to indicate the 

intended inclusion of these objectives to the XSLT stylesheet processor with 

MetaCommand behaviors. 
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Name Attribute Value 

Possible Content 
Attribute Values 

 
Description 

calibrateDepth yes or no Value for the launch command "Auto calibrate 
depth sensor" parameter. 

clearCalibration yes or no Value of the next compass calibration 
command's "Clear calibration?" parameter. 

compassCalibration yes or no Calls for a compass calibration command at the 
current position in the script. 

depth positive float Transponder depth for a transponder location. 

hardware String Location type and label for a transponder 
location. 

latitude float Latitude of a transponder. 
longitude float Longitude of a transponder. 

moveAway positive float Value of the next compass calibration command 
"Move away duration (seconds)" parameter 

sidescanRange same, 5, 10, 20, 
30, 40, 50 or 75 

Value of the next Navigate, Dead Reckon or 
Transponder Home command "Sidescan 
Range" parameter. 

trackPingInterval positive float 
Value of the next Navigate, Dead Reckon or 
Transponder Home command "Track ping 
interval (seconds)" parameter. 

transponderLabel String Transponder location label for the next 
Transponder Home command. 

triangleAltitude positive float Value to use for the next triangle altitude control 
"Triangle altitude" parameter. 

triangleMinimum positive float 
Value to use for the next triangle depth or 
altitude control "Triangle minimum (m)" 
parameter. 

triangleMaximum positive float 
Value to use for the next triangle depth or 
altitude control "Triangle maximum (m)" 
parameter. 

triangleRate positive float 
Value to use for the next triangle depth or 
altitude control "Triangle rate (m/min)" 
parameter. 

verifyTransponderRange yes or no Value for the launch command "Verify range to 
nearest transponder" parameter. 

waitDepth positive float Calls for a Wait Depth command at the current 
script location (should follow set position). 

waitMagnet none Calls for a Wait Magnet command at the current 
script location (should follow set position). 

waitProp positive integer Calls for a Wait Prop command at the current 
script location (should follow set position). 

waitRun none Calls for a Wait Run command at the current 
script location (should follow set position). 

waypointNavMode 
best, deadReckon 
or 
transponderHome 

Directs the type of waypoint command to use. 

Table 5.7.   AVCL MetaCommand Name Attribute Values Used by the XSLT Stylesheet 
Targeted to the REMUS UUV Family 
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MetaCommand behaviors are also used to indicate desired vehicle-specific 

control modes.  Given their other applications, the use of a MetaCommand behavior to 

note the intended use of a Navigate objective rather than a Dead Reckon or Transponder 

Home objective, for example, seems reasonable.  Additionally, REMUS-specific triangle 

vertical-control modes (which direct the vehicle to vary depth or altitude between upper 

and lower bounds) are captured by  MetaCommand behaviors where the name attribute 

correlates to the control mode parameter (e.g., triangle minimum) and the content 

attribute is set to the desired parameter value. 

A final use of MetaCommand behaviors to capture REMUS-specific 

information is the specification of the locations of the transponders that the REMUS 

vehicles utilize for position tracking.  Each transponder location is encoded with four  

MetaCommand behaviors—one for the type and label, and one each for the latitude, 

longitude and depth.  These particular MetaCommand behaviors are parsed by the 

stylesheet before any REMUS objectives are generated in order to construct the mission 

file’s locations section.  These are the only locations required when generating REMUS 

missions from AVCL task-level behavior scripts since all other geographic positions 

within the script are included in their respective commands. 

As with the Seahorse-specific MetaCommand behaviors, those relating to 

REMUS objectives can be effectively ignored by stylesheets targeted to vehicles outside 

of the REMUS UUV family.  Missions can therefore be defined from the start with multi-

vehicle compatibility in mind even when vehicle-specific data must be generated during 

the translation to one or more target vehicles. 

To summarize, AVCL MetaCommand behaviors are used to encode 

REMUS-specific objective parameter values, commands and navigation transponder 

locations, and also to differentiate between the available REMUS waypoint types.  This 

extensive use of  MetaCommand behaviors does not come without overhead, most 

frequently in the form of additional mutable variable requirements.  Of the 18 mutable 

variables used to implement the AVCL-to-REMUS stylesheet, nine maintain information 

that is inferred from MetaCommand content.  Fortunately, since all mutable variables are 
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handled simultaneously (i.e., the algorithm is not reimplemented for each variable), 

additional mutable variables do not add significantly to the overall stylesheet complexity. 

Mappings used to generate REMUS missions from AVCL task-level 

behavior scripts are depicted in Figures 5.10 through 5.12.  The commands not presented 

are generated entirely from MetaCommand content (or default values if the expected  

MetaCommand behaviors are not encountered before the objective is to be generated) 

with the exception of the Navigate Rows objective, which is never generated by the 

AVCL-to-REMUS stylesheet since potentially applicable AVCL CompositeWaypoint 

behaviors are converted to a series of individual Waypoint behaviors prior to translation. 

 
Figure 5.10.   AVCL Data Mapping to the REMUS UUV Set-Position and Surface 

Objectives 
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Figure 5.11.   AVCL Data Mapping to the REMUS UUV Navigate and Dead-Reckon 

Objectives 
 

 
Figure 5.12.   AVCL Data Mapping to the REMUS UUV Transponder-Home Objective 
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2. Generation of Data-Model-Compliant XML from Vehicle-Specific 
Text Documents 

a. Context-Free-Grammar-Based Translation 
The preceding discussion illustrates the utility of XSLT in translating data-

model-compliant XML to arbitrary text-based data formats used by autonomous vehicles.  

This is, however, only half the problem.  In order to use a common data model as a 

bridge between vehicle-specific data formats, it is necessary not only to translate data-

model-compliant documents for specific vehicles, but to convert vehicle-specific data 

into data-model-compliant documents.  Since vehicle-specific data formats are generally 

not XML-based, an XSLT stylesheet cannot be used for the conversion of vehicle-

specific data to common data-model-compliant XML.  There is, in fact, no generally 

recognized tool of choice suitable for this purpose.  A simple observation, however, can 

be made that vehicle-specific data formats do impose rigorously defined lexical, 

semantic, and structural constraints even though they are not XML-based.  This 

observation provides the basis for a methodology for automated parsing and conversion 

of vehicle-specific data to data-model-compliant XML. 

More formally, each vehicle-specific data format is actually a context-free 

language.  Mathematically speaking a context-free language is the set of strings derivable 

from a context-free grammar (Hopcroft, et al., 01).  The implication of the previous 

statements is that there exists a context-free grammar corresponding to any vehicle-

specific data format in which we might be interested.  It stands to reason that the context-

free grammar can be used to both generate and parse instances of the vehicle-specific 

format. 

A context-free grammar is formally specified with four components:  V, T, 

P and S, where V is a set of variables, T the set of terminal symbols in the context-free 

language, P a set of production rules, and S the set of available start symbols (a non-

empty subset of V) (Hopcroft, et al., 01).  As a simple example, consider the productions 

( )→P  and ( )PP →  where P is a variable, ‘(’ and ‘)’ are terminal symbols and the 

production symbol (→ ) means that the variable on the left can be expanded into the 

sequence of terminal symbols and variables on the right.  These particular productions are 

capable of generating all strings of balanced parentheses (i.e., strings of the form 
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“((()))”).  An appropriate context-free grammar for the context-free language consisting 

of all balanced parentheses strings can therefore be fully defined using Equation 5.5.  

Simplicity of the example notwithstanding, context-free grammars can be a powerful tool 

for recursively defining a variety of complex languages.  In fact context-free grammar 

production rules of the form described above provide the basic building blocks of the 

XML DTD and can be used to define high-level programming languages as well 

(Hopcroft, et al., 01). 

       { } { } ( ) ( ){ } { }( )PPPPPG ,,,)(,, →→=            (Eq. 5.5) 

The use of  context-free grammars to support the translation of vehicle-

specific data into AVCL consists of three steps:  definition of a Chomsky-Normal-Form 

grammar corresponding to the vehicle-specific data format, use of the Cocke-Younger-

Kasami algorithm to generate a parse tree corresponding to the vehicle-specific data, and 

the conduct a depth-first parse-tree traversal to convert it to an equivalent AVCL 

document (Davis, 05). 

The productions of a Chomsky Normal Form context-free grammar have 

three significant characteristics: 

• There are no useless symbols (i.e., variables or terminal symbols that do 
not appear in any terminal-string derivation beginning with the start 
symbol). 

• There are no ε  (null) productions (i.e., those of the form ε→A ). 

• All productions are of the form BCA→  or aA→  where A, B and C are 
variables and a is a terminal symbol. 

It can be proven that for any context-free language not containing the empty string (ε ), 

there exists a Chomsky Normal Form context-free grammar capable of generating that 

context-free language (Hopcroft, et al., 01). 

From a practical standpoint, defining a context-free grammar to generate a 

particular vehicle-specific data format involves determining the terminal symbols and 

writing the productions.  The set of terminal symbols can consist solely of numbers as is 

the case with ARIES waypoint lists or can include keywords, symbols and numbers as in 

the Phoenix, Seahorse and REMUS command languages.  Production definition can be 

fairly arbitrary.  Nevertheless, the production rules ultimately determine the structure of 
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the parse tree, so it is advisable to utilize rules that have intuitive meaning.  The 

production rules of Figure 5.13, for instance, can be used to derive the parse tree of 

Figure 5.14 corresponding to a single Phoenix waypoint behavior.  Ultimately, defining 

meaningful production rules facilitates the final step of the translation process.  Defining 

production rules in an intuitive manner also allows the reuse of variables throughout the 

set of production rules (e.g., the Position2D and Position3D variables can be used in any 

production using a two dimensional or three-dimensional position respectively). 

 
Figure 5.13.   Context-Free Grammar Production Rules for Generating a Phoenix UUV 

Waypoint Behavior 

 

 
Figure 5.14.   A Parse Tree Corresponding to a Single Phoenix UUV Waypoint Behavior 

Based on the Production Rules of Figure 5.13 (After: Davis, 05) 

 

The second step in the translation process is the application of the Cocke-

Younger-Kasami algorithm (Figure 5.15) to a context-free language instance.  The 

Cocke-Younger-Kasami algorithm uses dynamic programming (Corman, et al., 90) to 

 
Command → WaypointToken + Position3D 
Position3D → Position2D + Double 
Position2D → Double + Double 
WaypointToken → “WAYPOINT” 
Double → any floating point number 
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parse context-free language instances in a bottom up fashion.  The result of the algorithm 

is a binary parse tree representing a context-free grammar derivation of the context-free 

language instance (for the sake of simplicity, the algorithm as depicted in Figure 5.15 

tests for context-free language membership but does not actually generate a parse tree).  

The Cocke-Younger-Kasami algorithm was chosen for parsing context-free language 

instances for two reasons.  First it is among the more efficient context-free language 

parsing algorithms available, having a computational complexity of ( )3nO  where n is the 

length of the string being parsed (Corman, et al., 90).  There are, in fact, algorithms 

available that are more efficient for certain context-free languages, but the Cocke-

Younger-Kasami is a good choice if reasonable performance is required for all context-

free languages.  The second reason for using the Cocke-Younger-Kasami algorithm is 

that it is universally applicable.  That is, it can be used to parse an instance of any 

Chomsky Normal Form context-free grammar.  This relative language-independence is 

one of the most significant strengths of this translation approach. 

 
Figure 5.15.   The Cocke-Younger-Kasami Algorithm for Parsing Chomsky-Normal-

Form Context-Free Language Instances (After: Hopcroft, et al., 01) 

 
Let the input string be a sequence of n letters a1…an 
Let V1…Vr be the set of CFG symbols (V) 
Let S be the set of indices of V corresponding to 

context-free grammar start symbols 
Let P[n, n, r] be a Boolean array initialized to false 
 
For i = 1 to n 
    For each unit production Vj → ai 
        P[i, 1, j] = true 
 
For i = 2 to n – Length of span 
    For j = 1 to n – i + 1 – Start of span 
        For k = 1 to i – 1 – Partition of span 
            For each production VA → VBVC 
                if P[j, k, B] == true and 
                   P[j + k, i – k, C] == true 
                    then P[j, i, A] = true 
 
if P[1, n, x] is true (x is an element of S) 
    then the string is in the context-free language 
    else the string is not in the context-free language 
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The final step in the translation process is converting the parse-tree 

representation of a vehicle-specific document to AVCL.  Conversion of a parse tree to 

AVCL relies on a depth-first traversal of the tree.  As with XSLT processing of an XML 

document, templates defining what actions are to be taken are applied at each node.  

Actions in most cases call for recursive processing of the current node’s left and right 

child, and in some cases include the generation of AVCL content. 

As an example, upon arriving at the Command node of Figure 5.14, the 

applicable template calls for the generation of an AVCL Waypoint behavior 

corresponding to the Phoenix waypoint behavior.  Since the structure of the parse tree is 

deterministic, it is unlikely that further recursive processing of the subtree will be 

required.  All of the information required to generate the AVCL task-level behavior is in 

a known location relative to the current node and can be accessed directly.  For instance 

the type of command is always specified by the left child of a Command node.  Once the 

translator is aware that the current node contains a waypoint behavior, the content of the 

right subtree is known as well. 

A noteworthy characteristic of the depth-first traversal is that the overall 

instance document is processed in order.  For vehicle-specific data formats along the lines 

of those used in the ARIES and Seahorse UUVs, the corresponding AVCL is therefore 

generated in the same order.  However, the sequence and structure of the AVCL 

corresponding to more complex data formats such as that of the REMUS family of 

vehicles may differ significantly from that of the vehicle-specific document.  Since the 

parse-tree traversal is fixed, AVCL generation must be arbitrary (i.e., it must be possible 

to generate the AVCL document in any order).  XML data binding facilitates this sort of 

document generation by creating the document as in-memory objects and deferring 

output serialization until tree construction is complete.  Since the entire document is 

maintained in memory throughout the process, it is a fairly simple matter to access or 

modify existing content, add new content, and move or copy existing content from one 

location in the document to another. 

Programmatic implementation of individual context-free grammars is 

accomplished through the definition of a dictionary class specific to the context-free 
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grammar that lexically maps tokens to their unary production rule, along with a context-

free-grammar-specific class containing the binary production rules of the grammar.  The 

implementation documented here is written in Java.  In effect the dictionary and 

production classes perform the same function for vehicle-specific data formats that the 

XML schema does for AVCL—they formally constrain the structure and content of 

compliant documents and provide a means of automatically loading the document into a 

semantically meaningful programmatic data structure. 

Implementation of the parse-tree translator is accomplished through the 

definition of a context-free-grammar-specific translator class.  Just as the use of 

dictionary and production rule classes to constrain non-XML data is analogous to the use 

of an XML schema, the  function of the translator class is analogous to that of the XSLT 

stylesheets discussed in the previous section.  The parse-tree translators, however, 

perform their function in a different manner.  XSLT stylesheets can traverse tree 

contained in the source document arbitrarily but must generate the output document 

serially.  Conversely, the depth-first traversal of the parse tree by the context-free 

grammar translators uses only serial processing of the source document but allows 

arbitrary access to the output document. 

To summarize, context-free grammars provide the basis for automated 

translation from arbitrary text-based, vehicle-specific data formats to common 

autonomous vehicle data-model-compliant XML.  Analogous to the XSLT-based 

translations from AVCL to vehicle-specific formats, context-free-grammar-based 

translation of vehicle-specific formats to AVCL completes the translation chain between 

arbitrary text-based, vehicle-specific data formats. 

b. Conversion of Phoenix UUV Command Files to AVCL 
Of the four text-based, vehicle-specific data formats discussed in the 

previous section, the Phoenix behavior scripting language is the easiest to generate from 

AVCL task-level behavior scripts.  The characteristics that make this so, namely the 

frequent one-to-one correlation between individual behaviors and the semantic similarity 

between the languages, also simplifies the translation of Phoenix behavior scripts to 

AVCL.  In fact, the increased flexibility of AVCL in representing various parameter 

configurations enables a one to one mapping from Phoenix behaviors to AVCL task-level 
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behaviors in all but the most unusual cases.  A summary of the Phoenix-to-AVCL 

translator mappings from the most commonly utilized Phoenix behaviors to AVCL is 

provided in Table 5.8. 

Phoenix 
Behavior 

AVCL Task-
Level Behavior 

 
Notes 

Depth MakeDepth Units converted from feet to meters. 
GPS GpsFix None 
Heading MakeHeading None 

Hover Hover Units converted from feet to meters. 
May include depth, heading and standoff. 

Lateral MoveLateral None 
Mission-Script MissionScript None 
Planes SetPlanes None 
Position SetPosition Units converted from feet to meters. 
Quit Quit None 
Rotate MoveRotate None 
RPM SetPower RPM converted to percent of maximum. 
Rudder SetRudder None 
Thrusters-Off Thrusters Set the “enabled” attribute to “false.” 
Thrusters-On Thrusters Set the “enabled” attribute to “true.” 
Wait Wait None 
WaitUntilTime WaitUntilTime None 

Waypoint Waypoint Units converted from feet to meters. 
May include depth, speed and standoff. 

Table 5.8.   Mappings from Phoenix UUV behaviors to AVCL Task-Level Behaviors 

 

The context-free grammar upon which the Phoenix-to-AVCL translator 

relies consists of 92 unary production rules, 39 binary production rules and 32 variables.  

The unary productions are capable of generating floating point numbers and white-space-

free strings as well as the language’s 90 behavior keywords.  The unexpectedly large 

number of keywords arises from the availability of multiple keywords to specify the same 

behavior (e.g., a the Heading behavior can be ordered with a “heading,” “course,” or 

“yaw” keyword).  There are a number of behaviors in the Phoenix behavior scripting 

language that are not directly representable in AVCL.  By and large, these behaviors 

support mission and control testing in a virtual environment (Brutzman, 94).  Since they 

do not affect vehicle control these behaviors are not included in AVCL although their 

functionality has been incorporated directly into the AUVW (Davis and Brutzman, 05).  
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If it is desirable to identify the presence of these behaviors in the generated AVCL 

document, they can be included as  MetaCommand behaviors. 

c. Conversion of ARIES UUV Command Files to AVCL 

The most compact vehicle-specific context-free grammar developed for 

this research is the one corresponding to ARIES UUV waypoint lists.  This is not 

surprising since all terminal symbols are numbers and every line of the waypoint list has 

the same format (with the exception of the first line of the file).  A context-free grammar 

corresponding to the ARIES waypoint list context-free language, in fact, can be fully 

defined using only one unary production, 14 binary productions and 13 variables. 

The actual translation of parse trees corresponding to ARIES waypoint 

lists into AVCL is also straightforward.  In most cases, every element of an ARIES 

waypoint designation can be captured as a Single AVCL Waypoint.  The only exceptions 

are waypoints that call for differential propeller settings, which require the individual 

propeller commands to be specified prior to the Waypoint command.  Figure 5.16 shows 

the AVCL task-level behaviors corresponding to the translation of two ARIES waypoints.  

The first ARIES waypoint calls for both propellers to be powered at three volts (60 

percent of maximum power) so the propeller setting is included in the generated 

Waypoint behavior.  The second ARIES waypoint calls for the port propeller to be 

powered at 75 percent and the starboard propeller to be powered at 50 percent.  In order 

to capture both commanded settings, they are placed immediately prior to (rather than 

within) the AVCL Waypoint behavior.  Given the behavior-activation semantics of 

AVCL, this is equivalent to declaring the propeller orders within the Waypoint behavior. 

d. Conversion of Seahorse UUV Command Files to AVCL 

With 136 binary production rules, 46 unary production rules and 159 

variables, the context-free grammar developed to support parsing of Seahorse mission 

files is the most complex one implemented in the course of this work.  The complexity of 

this particular context-free grammar is brought about by the requirement to deal with 

parameters that may be optional, interchangeable or that may have more than one 

potential form.  Nevertheless, use of the context-free grammar for translation of Seahorse 

mission files to AVCL is not negatively impacted. 
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Figure 5.16.   An AVCL Task-Level Behavior Sequence Corresponding to Two ARIES 

UUV Waypoints 

 
Despite the increased complexity of the Seahorse context-free grammar, 

conversion of generated parse tree to AVCL is not difficult.  Each task is contained 

within a single subtree, so once the subtree for a particular task is encountered it is a 

simple matter to gather the associated parameter values.  Once the parameter values are 

collected AVCL task-level behaviors corresponding to the Seahorse order can be 

generated.  Figures 5.17 through 5.21 show the specific AVCL behaviors that are 

generated for each Seahorse order, and from where their attribute values originate. 

In general the sequence of AVCL task-level behaviors corresponding to a 

particular Seahorse order tends to be intuitive and the overall pattern is fairly consistent.   

MetaCommand behaviors (if required) are always placed first in the sequence.  This 

 
<Waypoint>  
 description="Aries absolute position waypoint"> 
  <XYPosition x="325.0" y="-25.0"/> 
  <Depth value="25.0"/> 
  <SetPower> 
    <AllPropellers value="60.0"/> 
  </SetPower> 
  <ObtainGps value="true"/> 
  <Standoff value="7.5"/> 
  <TimeOut value="57.45"/> 
</Waypoint> 
<SetPower> 
  <PortPropeller value="75.0"/> 
</SetPower> 
<SetPower> 
  <StarboardPropeller value="50.0"/> 
</SetPower> 
<Waypoint  
  description="Aries absolute position waypoint"> 
  <XYPosition x="425.0" y="-25.0"/> 
  <Altitude value="15.0"/> 
  <ObtainGps value="false"/> 
  <Standoff value="10.0"/> 
  <TimeOut value="66.6"/> 
</Waypoint> 
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ensures that the content is available when subsequent behaviors are processed during 

transformation to another data format (e.g., the rfComms MetaCommand behavior is 

processed before the surfacing MakeDepth behavior).  The AVCL behavior activation 

scheme dictates that depth and speed-related behaviors typically follow the  

MetaCommand behaviors since they potentially affect subsequent Waypoint, Loiter or 

Hover behaviors.  Waypoint or Loiter behaviors follow the depth and speed behaviors.  

Finally, any post-order behaviors are generated.  The most common behaviors falling into 

this category are those supporting the return-to-depth, return-to-start and post-arrival-

GPS parameters of the Seahorse Surface Comms, GPS Fix and Rendezvous orders. 

 
Figure 5.17.   Data Mapping from a Seahorse UUV Waypoint Navigation Order to 

AVCL Task-Level Behaviors 

 

Although similar, the mappings from Seahorse orders to AVCL task-level 

behaviors differ from the reverse mappings in one regard.  Whereas AVCL content is 

often optional mapped only when present, all Seahorse order parameters are required, so 

the mapping always occurs.  Depending on whether a particular parameter value equates 

to the AVCL default behavior, the corresponding task-level behaviors (or their content) 

may or may not be generated.  Good examples of this are provided by the Return to 
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Depth and Return to Start parameters of the Surface Comms order (Figure 5.19).  The 

task-level behaviors associated with these parameters are generated only if the value of 

the corresponding parameter is set to “true” since a setting of “false” is best represented 

by the absence of the corresponding task-level behavior.  Optional behaviors are 

indicated in the figures by dashed borders. 

 
Figure 5.18.   Data Mapping from a Seahorse UUV Station Keep Order to AVCL        

Task-Level Behaviors 

 

 
Figure 5.19.   Data Mapping from a Seahorse UUV Surface Comms Order to AVCL   

Task-Level Behaviors 
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Figure 5.20.   Data Mapping from a Seahorse UUV GPS Fix Order to AVCL Task-Level 

Behaviors 

 

 
Figure 5.21.   Data Mapping from a Seahorse UUV Rendezvous Order to AVCL          

Task-Level Behaviors 

 

e. Conversion of REMUS UUV Command Files to AVCL 
Significantly simpler than the context-free grammar designed for the 

Seahorse UUV, the context-free grammar implemented for the tasking language of the 

REMUS family of UUVs consists of 58 binary production rules, 119 unary production 

rules (as with Phoenix behaviors there are often multiple keywords with the same 
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meaning) and 52 variables.  A noteworthy aspect of the parse trees generated using this 

context-free grammar is that the left subtree of the root node contains all of the locations 

(including those specifying transponder locations).  The right subtree of the root node, on 

the other hand, contains all of the objectives.  The depth-first parse tree traversal used 

during the translation process ensures that all locations are processed before any of the 

objectives.  This is important for two reasons.  First, it facilitates the placement of  

MetaCommand behaviors corresponding to the transponder locations at the beginning of 

the AVCL task-level behavior script, which in turn facilitates processing them first when 

transforming the task-level script back to a vehicle-specific format.  Second, it ensures 

the processing of location descriptions before objectives that may reference them. 

The use of a separate locations section in REMUS mission files and the 

use of position references and offsets introduce translator issues that were not 

encountered during the implementation of the Phoenix, ARIES or Seahorse translators.  

Relative positions and references, for instance, are included in the REMUS language in 

order to simplify programming through reuse of individual positions, however 

simplification is irrelevant to processing stylesheets and translators.  For this reason all 

positions in a REMUS mission file (both those defined in the locations section and those 

defined in objectives) are converted to latitude and longitude—references and offsets are 

removed.  Also required during location processing is the generation of a lookup table.  

As a location is processed, its type, label, latitude, longitude and transponder depth (if 

included) are stored in a hash table (using the label as the key) for use when processing 

objectives containing references to the position.  Finally, the locations of navigation 

transponders must be incorporated into the AVCL task-level behavior script.  The 

MetaCommand behaviors used for this purpose are generated as depicted in Figure 5.22. 

After preprocessing the locations portion of the parse tree, translation of 

the objectives subtree into AVCL task-level behaviors is not significantly more difficult 

than translation of Seahorse orders.  Of the 13 REMUS objective types, seven can be 

mapped to the single AVCL task-level behavior indicated in Table 5.9.  Four of these 

map to MetaCommand behaviors that serve only to indicate the presence of the objective 

in the objective list and the values of any parameters. The remaining objective types are 

translated to AVCL task-level behaviors as depicted in Figures 5.22 through 5.24. 
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Figure 5.22.   Data Mapping from a REMUS UUV Location Descriptor Defining the 

Position of a Navigation Transponder to AVCL MetaCommand Behaviors 

 

REMUS 
Command 

AVCL Task-Level 
Behavior 

 
Notes 

End Quit None. 
Include MissionScriptInline Must translate inline file as well. 

Set Position SetPosition Compute latitude and longitude from Set Position 
location and offset. 

Wait Depth MetaCommand Set name attribute to "waitDepth.” 
Set content attribute value to depth. 

Wait Magnet MetaCommand Set name attribute to "waitMagnet.” 

Wait Prop MetaCommand Set name attribute to "waitProp.” 
Set content attribute to required revolutions per minute.

Wait Run MetaCommand Set name attribute to "waitRun.” 
Table 5.9.   Mappings from REMUS UUV Objectives to Single AVCL Task-Level 

Behaviors 

 
The task-level behavior sequences generated by the REMUS-to-AVCL 

translator are similar to those generated by the Seahorse-to-AVCL translator in that there 

are frequently behaviors that are generated only under certain circumstances.  In the case 

of scripts translated from REMUS missions, however, all of the optional behaviors are 

MetaCommand behaviors that are used to capture information that cannot be represented 

in AVCL (e.g., the triangle depth and altitude control information).  There are no optional 
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actions in REMUS objectives along the lines of those implied by the Seahorse Surface 

Comms order Return to Depth and Return to Starting Point parameters. 

 
Figure 5.23.   Data Mapping from a REMUS UUV Navigate, Dead Reckon or 

Transponder Home Objective to AVCL Task-Level Behaviors 

 

The AVCL task-level behavior sequences corresponding to REMUS 

objectives follow the same general pattern as those generated from Seahorse orders.  

MetaCommand behaviors are generated first, followed by depth and speed related 

behaviors and finally, waypoint or other behaviors.  When possible MetaCommand 

behaviors intended to influence the semantics of another behavior, such as 
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MetaCommand behaviors that specify triangle altitude or depth control parameters, are 

placed immediately prior to the behavior to which they relate.  Organization of task-level 

behavior sequences in this manner accurately captures the semantics of the original 

REMUS objective and provides for an intuitive series of commands from the perspective 

of the REMUS objective.  It also arranges behaviors so that XSLT stylesheets translating 

the sequence to vehicle-specific formats can process MetaCommand, depth, and speed 

related behaviors before waypoint or other behaviors whose requirements they may 

partially define. 

 
Figure 5.24.   Data Mapping from a REMUS UUV Navigate Rows Objective to AVCL 

Task-Level Behaviors 
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D. BINARY DATA FORMATS 

1. Overview 

XSLT and context-free grammars provide straightforward mechanisms for 

automated translations between common data-model-compliant XML and arbitrary text-

based, vehicle-specific data formats.  The methods discussed thus far, however, are not 

directly applicable to binary data formats such as JAUS.  In order for the proposed 

common autonomous vehicle data model to be applied to arbitrary vehicles, a mechanism 

must be developed for the conversion of AVCL to binary data formats and vice versa.  

XML is not a binary format, and there are no standards or tools along the lines of XSLT 

capable of converting XML to an arbitrary binary format or creating XML from binary 

data.  Nevertheless, XML can be used as the basis of a mechanism for both conversions 

required to support AVCL compatibility with these diverse data formats. 

 
Figure 5.25.   Data Mapping from REMUS UUV Compass Calibration and Surface 

Objectives to AVCL Task-Level 
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The use of XML with binary data leverages the fact that both XML and binary 

formats are nothing more than data encoding methods (a principle that is also true of 

programming objects and context-free languages).  Data can be represented in any of 

these formats and the selection of the appropriate encoding depends on the usage 

requirements.  Binary data is often preferable for communications whereas XML is often 

used when self-validation, web compatibility or platform independence is desired, and 

programming objects are used within applications.  Methods are also commonly available 

for converting between various formats.  XML data binding and DOM, for instance, 

convert between XML and programming objects, serializers convert programming 

objects to binary format for storage or transmission, and readers convert binary data to 

programming objects. 

The proposed method of fostering compatibility between binary formats and 

AVCL leverages the general equivalence of various data encodings using an XML 

encoding of the binary data.  First the XML form of the binary data is transformed to or 

from AVCL using XSLT.  As indicated in Figure 5.26, which graphically depicts the 

relationships between AVCL and XML-encoded JAUS messages, an XML schema is 

defined for the XML version of the binary data format to be encoded and XML data 

binding is used to create an API corresponding to the schema.  A custom reader and 

serializer can then read and write binary data to and from the schema-based programming 

objects and XSLT stylesheets are used to convert the schema-governed JAUS-XML 

documents to and from AVCL.   Using this methodology conversion between AVCL and 

any potentially compatible binary data format requires three steps:  

1. Definition of a schema to constrain the XML encoding of the binary data. 

2. Development of a reader and serializer to read and write binary data to and 
from JAXB-derived programming objects. 

3. Development of XSLT stylesheets to translate XML documents 
corresponding to binary data to and from AVCL. 

2. JAUS-XML Overview 
Unlike AVCL, JAUS does not directly support scripting.  Rather, the messages 

that make up the implicit JAUS command set discussed in Chapter IV are transmitted 

individually to immediately elicit vehicle activities.  There is no JAUS construct along 

the lines of an AVCL task-level behavior script for grouping a set of command messages 
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together.  This difference between AVCL and JAUS is handled by the reader and 

serializer, however, and does not pose a problem during translation. 

 
Figure 5.26.   XML-Based Translation between JAUS and AVCL 

 

An individual JAUS message is encoded in XML with a Header element followed 

by a message-type-specific element containing the actual message data.  The Header 

element shown in Figure 5.27 contains all of the information from the JAUS message 

header fields (with the exception of the command code) and is common to all XML-

encoded message types.  Data value ranges in the message header element are 

constrained in accordance with (JAUS, 04-4).  Additionally, a number of header fields 

have fixed values (e.g., the version attribute of the MessageProperties element always has 

a value of “3.2”) and are included for clarity.  The command content of the message is 

encoded as a message-type-specific message data element corresponding to one of the 22 

message-types included in the schema.  Some of these, such as the QueryHeartbeatPulse 

element, are empty and serve only to identify the type of message (the command code 

field of the binary JAUS message header).  The message data elements for Query Class 

messages, contain Boolean attributes identifying the specific data requested by the 

message.  Most message data elements corresponding to Command and Inform Class 

messages contain child elements with command parameters (Command Class messages) 

or vehicle state information (Inform Class messages).  The content models of message 
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data elements for corresponding Command and Inform messages (e.g., Set Global Vector 

and Report Global Vector) are, more often than not, identical. 

 
Figure 5.27.   An XML Encoding of a JAUS Message Header 

 

The top level element of a JAUS-XML document provides a wrapper for a series 

of messages.  The reader constructs the list according to the content of the binary data 
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source from which it is reading (input stream, file, etc.) and all readable messages are 

encoded into a single JAUS-XML document.  Similarly, the serializer writes out the 

contents of the message list in a single serialized stream regardless of whether the list 

consists of one or many messages.  In this way, the list structure of the JAUS-XML 

document can be used to encode a single JAUS message or a series of JAUS messages. 

3. Conversion of JAUS-XML to AVCL 

As mentioned previously, an XSLT stylesheet is used to convert XML-encoded 

JAUS messages to AVCL.  In this regard there is little difference between this 

transformation and the conversion of AVCL task-level behavior scripts to text-based data 

formats beyond the observation that the product of the JAUS-to-AVCL translation is 

XML vice free text.  There are, however, two potential interpretations of a series of JAUS 

commands.  The most obvious interpretation is to treat the JAUS message sequence 

literally (i.e., as a series of messages that are to be transmitted or received exactly as they 

are encoded).  On the other hand, JAUS messages are the command mechanism of a 

JAUS system, so it is reasonable for a vehicle receiving a JAUS message to interpret it as 

an imperative instruction.  Depending on the vehicle involved, it may be more 

appropriate to remove the message-specific constructs during translation and simply treat 

a message sequence as a series of commands (i.e., as a task-level script).  Since both of 

these scenarios are feasible, stylesheets supporting both approaches were developed. 

As indicated by Figure 5.28, the most notable differences between the two JAUS-

to-AVCL stylesheets are the root tag of the generated document (AVCLMessageList or 

AVCL) and the mapping of the JAUS-XML header.  When generating an AVCL 

message list, JAUS-XML header information is used to generate the AVCL message 

header, whereas it is included in an AVCL task-level behavior script using 

MetaCommand behaviors.  Both stylesheets map the message data section of Command 

Class JAUS-XML messages to AVCL task-level behaviors.  However, the two mappings 

each treat the generated task-level behavior differently.  When mapped to an AVCL 

message list, the generated task-level behaviors comprise the body of a message in the 

list.  When mapped to a task-level behavior script they are inserted directly into the 

script.  Query and Inform Class messages are translated to equivalent AVCL messages in 

the AVCL message list, but they do not map to AVCL task-level behaviors so they are 
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effectively ignored by the script-generating stylesheet (a warning message is generated 

and a MetaCommand is inserted into the script). 

 
Figure 5.28.   Mapping of a JAUS-XML Message List to an AVCL Message List or      

Task-Level Behavior Script 

 

Of the 22 JAUS messages available in the JAUS-XML schema, 20 can be 

atomically represented using a single AVCL construct.  These are listed in Table 4.11 

along with the AVCL construct to which they are mapped.  In the case of Command 

Class messages, the corresponding AVCL construct is a task-level behavior (possibly 

embedded into the body of an AVCL message).  When an AVCL message list is the 

desired transformation product, Query Class messages are transformed into AVCL 

InformationRequest messages.  Inform Class messages to be included in an AVCL 
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message list, on the other hand, are transformed into VehicleState, VehicleCharacteristics 

or empty messages depending on the type of information being transmitted.  If the JAUS 

message sequence is being used as the basis of an AVCL task-level behavior script, the 

presence of a Query or Inform Class message is indicated by a MetaCommand behavior, 

but the content of the JAUS message is not incorporated into the task-level script. 

Message Type AVCL Construct Notes 
Query Heartbeat 
Pulse 

InformationRequest 
message Information type attribute set to "ping.” 

Query Global Pose InformationRequest 
message Information type attribute set to "posture.” 

Query Global Vector InformationRequest 
message Information type attribute set to "posture.” 

Query Platform 
Specifications 

InformationRequest 
message 

Information type attribute set to 
"vehicleCharacteristics.” 

Query Time InformationRequest 
message Information type attribute set to "vehicleTime.” 

Query Travel Speed InformationRequest 
message Information type attribute set to "velocity.” 

Query Velocity State InformationRequest 
Message Information type attribute set to "velocity.” 

Query Wrench Effort InformationRequest 
message 

Information type attribute set to 
"controlSettings.” 

Report Heartbeat 
Pulse Empty message None 

Report Global Pose VehicleState 
message 

VehicleState element contains 
GeographaphicPosition, VerticalPosition and 
Orientation elements.  

Report Global Vector VehicleState 
message 

VehicleState element contains vehicle telemetry 
element. 

Report Platform 
Specifications 

VehicleCharacteristics 
message None 

Report Time VehicleState 
message 

VehicleState element contains a timestamp 
only. 

Report Travel Speed VehicleState 
message 

VehicleState element contains a 
BodyCoordinateVelocity element. 

Report Velocity State VehicleState 
message 

VehicleState element contains a 
BodyCoordinateVelocity element. 

Report Wrench Effort VehicleState 
message 

VehicleState element contains a vehicle control 
setting element. 

Set Global Waypoint Waypoint behavior None 
Set Time SetTime behavior None 
Set Travel Speed MakeSpeed behavior None 
Shutdown Quit behavior None 

Table 5.10.   JAUS Message Types that can be Mapped to a Single AVCL Construct 
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The remaining JAUS message types (Set Global Vector and Set Wrench Effort 

messages) are transformed into AVCL task-level behaviors as depicted in Figures 5.29 

and 5.30.  The behavior sequence generated for these message types depends on the 

message content and the target vehicle type (specified as a parameter to the XSLT 

stylesheet).  The elevation element of the Set Global Vector message, for instance, can be 

used to generate a UAV MakeAltitudeMSL behavior or a UUV MakeDepth behavior.  If 

the generated script is intended for a UGV or USV, the elevation element is ignored. 

 
Figure 5.29.   Data Mapping from a JAUS Set Global Vector Message to AVCL Task-

Level Behaviors 

 

As with other mappings from vehicle-specific data formats to AVCL, JAUS 

messages often contain a number of optional values.  Indicated by a dashed border in 

Figures 5.29 and 5.30 (a number of examples are also present in the JAUS message types 

of Table 5.10), the presence of these fields are a prerequisite to the generation of their 

corresponding AVCL constructs.  Also present in a number of JAUS messages are data 

fields whose values are not carried over to the AVCL constructs during translation (e.g., 

the Roll and Pitch fields of the JAUS Set Global Vector message of Figure 5.29).  

MetaCommand behaviors can be used to indicate the presence and values of these data 

fields if desired, however the common use of these data fields when using JAUS with the 

envisioned vehicles seems unlikely.  For example, the ability of any autonomous vehicle, 

regardless of type, to maintain a commanded roll or pitch is doubtful, and only UGVs 

possess the ability to apply the resistive effort (braking) potentially ordered by a Set 
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Wrench Effort message to any great degree.  For this reason most of these data fields are 

ignored in the JAUS-to-AVCL stylesheets developed for this research. 

 
Figure 5.30.   Data Mapping from a JAUS Set Wrench Effort Message to AVCL          

Task-Level Behaviors 
 

4. Conversion of AVCL to JAUS-XML to AVCL 

Translation of AVCL task-level behavior scripts, message lists and individual 

messages to JAUS-XML is also accomplished with an XSLT stylesheet.  Regardless of 

the AVCL document being translated, the result of stylesheet application is a sequence of 

JAUS-XML messages.  Translation of individual AVCL messages and message lists is 
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slightly less complicated than translation of task-level behavior scripts because the 

individual messages contain sufficient information to generate the JAUS message header.  

Translation of task-level behavior scripts, on the other hand, requires specification of the 

message source and destination, acknowledgement requirements, and priority using 

parameters to the stylesheet or MetaCommand behaviors embedded within the script.  

Beyond this, translation of all valid AVCL constructs to JAUS-XML is identical. 

AVCL information-request and information-reporting messages are converted to 

JAUS messages as indicated in Tables 5.11 and 5.12 with each AVCL message being 

translated to a single JAUS message.  Not surprisingly, AVCL messages that are used to 

request information correlate to JAUS Query Class messages, and messages that are used 

to report information correlate to Inform Class messages.  Translation of AVCL task-

level behaviors (and messages with task-level behavior content) is only slightly more 

involved.  As shown in Table 5.13 most task-level behaviors are mapped to a single 

JAUS message and even the Loiter and Waypoint behaviors are frequently translated to a 

single message.  A Set Travel Speed or Set Wrench Effort message is placed prior to the 

Set Global Waypoint message if a behavior specifies the transit speed or power 

respectively. 

Information Request Content JAUS Message 
Ping Query Heartbeat Pulse 
Vehicle Characteristics Query Platform Specifications 
Vehicle Time Query Time 
Control Settings Query Wrench Effort 
Posture Query Global Pose 
Velocity Query Velocity State 

Table 5.11.   Translation of AVCL Information Request Messages to JAUS Messages 

 

Information Report Content JAUS Message 
Vehicle Characteristics Report Platform Specifications 
Vehicle State (body velocity) Report Velocity State 
Vehicle State (control order) Report Wrench Effort 
Vehicle State (posture) Report Global Pose 
Vehicle State (time stamp only) Report Time 

Table 5.12.   Translation of AVCL Information Reporting Messages to JAUS Messages 
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Examination of Table 5.13 reveals a number of imperfect mappings.  This is not 

unique to this particular translation and is conceptually not dissimilar to AVCL behaviors 

that do not translate at all to a particular vehicle-specific language (e.g., the AVCL 

TakeStation behavior does not correlate to a JAUS message).  The fact of the matter is 

that regardless of target vehicle there may be AVCL behaviors that are beyond the 

vehicle’s capabilities.  There are typically other task-level behaviors that are within the 

target vehicle’s physical capabilities but whose semantics cannot be fully captured by a 

vehicle-specific data format.  Hover and Loiter behaviors fall into this category when 

being translated to JAUS messages because they require specific vehicle action upon 

waypoint arrival, but the JAUS Reference Architecture does not specify what a vehicle is 

to do upon reaching a waypoint (JAUS, 04-4). 

Task-Level 
Behavior 

 
JAUS Messages 

 
Notes 

Hover Set Global Waypoint UUV only.  Hover behavior upon arrival not 
guaranteed. 

Loiter 
Set Travel Speed (optional)
Set Wrench Effort (optional)
Set Global Waypoint 

Loiter behavior upon arrival not guaranteed. 
Set travel speed used if transit speed 
specified. 
Set wrench effort (propulsive linear X field) 
used if transit speed specified. 

MakeAltitudeMSL Set Global Vector UAV only.  Sets the elevation field. 
MakeClimbRate Set Wrench Effort UAV only.  Sets the propulsive linear Z field. 
MakeDepth Set Global Vector UUV only.  Sets the elevation field. 
MakeHeading Set Global Vector Sets the heading field. 
MakeKnots Set Travel Speed None 
MakeSpeed Set Travel Speed None 
MakeTurnRate Set Wrench Effort UAV only.  Sets propulsive rotational Z field. 
MoveLateral Set Wrench Effort UUV only.  Sets propulsive linear Y field 
MoveRotate Set Wrench Effort UUV only.  Sets propulsive rotational Z field. 
Quit Shutdown None 
SetAileron Set Wrench Effort UAV only.  Sets propulsive rotational X field. 
SetElevator Set Wrench Effort UAV only.  Sets propulsive rotational Y field. 
SetPlanes Set Wrench Effort UUV only.  Sets propulsive rotational Y field. 
SetPower Set Wrench Effort Sets the propulsive linear X field. 

SetRudder Set Wrench Effort UUV, USV, and UAV only.  Sets propulsive 
rotational Z field. 

SetThruster Set Wrench Effort UUV only.  May set propulsive linear Y field 
OR the propulsive linear Z field. 

Waypoint 
Set Travel Speed (optional)
Set Wrench Effort (optional)
Set Global Waypoint 

Set travel speed used if transit power 
specified. 
Set wrench effort (propulsive linear X field) 
used if transit speed specified. 

Table 5.13.   Translation of AVCL Task-Level Behaviors to JAUS Messages 
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As discussed earlier in this chapter, the stylesheet used for translation of AVCL to 

any vehicle-specific format can handle task-level behaviors that do not map perfectly to 

vehicle-specific commands in one of two ways.  If clearly incompatible with the vehicle-

specific format, the stylesheet needs to generate error messages or initiate recovery 

procedures.  Alternatively, the task-level behavior can be converted to the best vehicle-

specific fit as was done when converting the AVCL Hover and Loiter to JAUS messages.  

The inability to ideally map all AVCL behaviors to a particular vehicle-specific format 

does not indicate an inherent incompatibility, but must be dealt with during translation 

nevertheless.  The requirements of the particular situation will dictate whether a mapping 

from a particular behavior to the target data format is reasonable or not. 

E. SUMMARY 
Two important requirements for the use of a common autonomous vehicle data 

model to support arbitrary vehicles is the ability to translate data-model-compliant data to 

formats suitable for specific vehicles, and conversely to convert vehicle-specific data to a 

data-model-compliant form.  Further, the processes involved in these translations must be 

general enough to apply to arbitrary vehicle formats.  This capability is demonstrated 

through the automated translation of AVCL to and from four text-based vehicle-specific 

data formats and one binary format. 

Generation of arbitrary text formats from AVCL is accomplished using XSLT 

stylesheets.  Semantic and syntactic differences between AVCL and various vehicle-

specific formats are handled by implementing a novel design pattern to obtain the 

functionality of mutable variables within XSLT stylesheets, accessing external functions 

through the use of XSLT extensions to implement functionality not normally available in 

XSLT, and the inclusion of MetaCommand behaviors in AVCL task-level behavior 

scripts to capture information that is truly vehicle-specific. 

The more difficult problem of translating text-based data formats from arbitrary 

vehicles to AVCL is accomplished through the use of context-free grammars, the Cocke-

Younger-Kasami parsing algorithm, and depth-first traversal and translation of a context-

free-grammar-based parse tree.  Analogous to the use of XML Schema to define the 

content and structure of an XML document and XSLT to transform documents to other 

text-based formats, a context-free grammar constrains the content and structure of valid 
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non-XML text documents, while the Cocke-Younger-Kasami algorithm and depth-first 

translation transforms compliant native-vehicle documents to another text-based format,. 

Translation of binary data formats along the lines of JAUS messages are 

translated to and from AVCL using an intermediate XML encoding of the binary data.  A 

binary data instance is converted to AVCL by implementing a data-format-specific 

binary reader that loads binary instances into data-bound programming objects 

conforming with the XML encoding.  The data-bound object is marshaled through an 

XSLT stylesheet designed to convert the XML encoding to AVCL.  Similarly, an XSLT 

stylesheet can be applied to an AVCL document to transform it into an XML encoding of 

the target binary format.  The actual binary form is generated by unmarshalling the XML 

document into a data-bound programming object that is serialized to the desired binary 

format by a writer implemented for the purpose. 

The successful implementation of the translations discussed in this chapter 

demonstrates how an XML-based common autonomous vehicle data format can be used 

as a bridge between arbitrary vehicle-specific formats.  Whether text-based or binary, 

instances of any vehicle-specific format can be converted to common-data-model-

compliant XML.  Similarly, common-data-model-compliant data can be converted to 

arbitrary text-based or binary vehicle-specific formats.  In effect this means that data in 

any vehicle-specific format can be converted to any other vehicle-specific format by 

using the common data model as an intermediate form—one of the primary objectives of 

this research. 
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VI. OFF-VEHICLE DECLARATIVE MISSION APPLICATION 

A. INTRODUCTION 
One aspect of the translation forms discussed in Chapter V is that they apparently 

deal solely with the task-level behavior and messaging portions of the AVCL schema.  In 

theory the translations discussed in Chapter V can be applied to declarative missions as 

well, but the fact of the matter is that the current generation of autonomous vehicles rely 

almost exclusively on a level of control that maps more naturally to the AVCL task-level 

behavior set.  This state of affairs might call into question the usefulness of a more 

abstract declarative mechanism such as the one developed in this work for defining 

autonomous vehicle tasking. 

This chapter begins to address the issue of declarative mission use by 

demonstrating how declarative autonomous vehicle mission specification can be used in 

conjunction with task-level behavior scripts during the pre-mission phase of an operation.  

Specific topics include the generation of task-level behavior scripts from declarative 

missions and the inference of appropriate declarative agendas from unannotated task-

level behavior scripts. 

B. GENERATION OF TASK-LEVEL BEHAVIOR SCRIPTS FROM 
DECLARATIVE SPECIFICATIONS 

1. Overview 
The first application of the declarative missions is their pre-mission use as the 

basis for task-level behavior scripts that are subsequently to be used for vehicle tasking.  

In many instances, it might be preferable to generate a task-level behavior script from a 

declarative AVCL agenda rather than to develop it manually because of the relative 

simplicity of the declarative tasking, since it is often more intuitive to describe what a 

mission is intended to accomplish than to define the precise detailed steps describing how 

to proceed.  It is more straightforward, for instance, to simply direct a vehicle to search 

an area than to define a long series of waypoints that provide the appropriate coverage.  A 

number of mechanisms are potentially applicable, including traditional artificial 

intelligence search and planning algorithms as well as heuristic application of predefined 

or parametrically-derived behavior sequences.  Before covering the actual mechanisms 
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used to convert declarative agendas to task-level behavior scripts, however, a number of 

issues particular to the pre-mission script generation bear discussion. 

Most obviously, the success or failure of the individual goals of a declarative 

mission is not known in advance, so the state transitions that are required over the course 

of the mission are not known.  In short, although it is possible to convert individual goals 

into suitable task-level behavior scripts, it is not possible to definitively determine how to 

appropriately order the scripts.  If, however, the assumption is made that all goals will 

succeed, a script representing a best-case mission progression can be generated.  The 

script-generation methodologies discussed in the remainder of this section are based on 

this assumption.  However, this assumption applies only to pre-mission script generation 

and not to the in-mission planning and replanning discussed in Chapter VII. 

A closely related issue concerning pre-mission conversion of declarative agendas 

to task-level behavior scripts (and groups of sub-scripts) arises from the static nature of 

scripts.  As with the sequencing of sub-scripts corresponding to individual goals in an 

agenda finite state machine, the makeup of the sub-scripts themselves is fixed once 

generated.  While this is typically true of the scripts (i.e., they do not change once the 

vehicle begins the mission), it does make effective pre-mission use of some goal-types 

more difficult.  AVCL goal types such as Attack, Demolish and MarkTarget, for instance, 

require the vehicle to locate a target before performing the specified action, but the 

precise position in the script at which the target will be located is not known when the 

script is generated in advance.  A more subtle aspect of the static nature of scripts is that 

it may not be possible to determine when a goal has completed.  An area search for a 

single target, for instance, is theoretically successful when the target is located.  The 

search script, however, provides for coverage of the entire area even if the target is 

promptly encountered on the first leg of the search.  It must be emphasized, however, that 

this problem is not unique to scripts generated from declarative agendas since it will also 

prove to be the case for manually generated area search scripts.  As with goal ordering, 

these potential behavior script ordering issues apply only to pre-mission script generation. 

A more insidious problem inherent in the use of AVCL agendas is that some 

information contained in the goals cannot be expressed accurately using task-level 
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behaviors.  In fact, some goal types implicitly require activities that cannot be 

commanded using the existing task-level behavior set (e.g., there is no task-level 

behavior available to command the vehicle to decontaminate an area).  This is 

particularly true of goal types that require situational use of mission-specific systems.  

Some current and developmental autonomous vehicles provide for limited control of 

mission systems, but the diversity of potential onboard systems and the lack of a mission 

payload standard make mission-system control using a generalized command set 

problematic.  From a control standpoint, many command languages implicitly assume 

that the vehicle “knows” its purpose and can manage its mission systems accordingly.  

For instance, a REMUS UUV with an onboard Computer-Aided Detection / Computer-

Aided Classification system will always look for and classify submerged mine-like 

objects, so there is no need to incorporate this sensor tasking into the mission definition 

(although REMUS objectives do provide some control over the sidescan sonar settings). 

A number of current research efforts may provide the promise of standardized 

mission system interface.  Examples include JAUS (the Manipulator and Environment 

Sensor subgroups of the Command, Query and Inform Message Classes), the Open 

Geospatial Consortium’s Sensor Model Language (OGC, 06) and ASTM International’s 

Standard Guide for Unmanned Undersea Vehicle Mission Payload Interface (ASTM, 06).  

The further development of these standards will likely make it possible to more 

effectively incorporate mission-system management into the autonomous vehicle control 

architecture, thereby making more robust execution of many goal-types possible.  Until 

then, the functionality required to fully execute many missions defined as declarative 

agendas in different robot architectures will remain elusive. 

In the near term, there is no good workaround that provides for the control of 

mission-specific systems using the vehicle’s command script—even if incorporated into 

the AVCL task-level behavior set, mission-specific behaviors are unlikely to translate to 

vehicle-specific commands.  Similar to their use in the translations of Chapter V, 

MetaCommand behaviors are used by the planners discussed in this and the next chapter 

to indicate mission-system control requirements.  To the extent that the command 

language of the target vehicle provides for mission-system control, these MetaCommand 

behaviors can be converted to vehicle-specific commands.  If the mission requirements 
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are beyond the capabilities of the target vehicle, the presence of the MetaCommand 

behavior can be used to generate a warning or error.  In all other cases, it is simply 

assumed that vehicle’s mission systems are operated correctly by default. 

Notwithstanding the aforementioned issues, it is possible to convert most AVCL 

agendas into task-level behavior scripts closely resembling those that might be manually 

developed to accomplish the same goals.  It is helpful to the pre-mission script-generation 

process to assume that individual goals always succeed, that sub-scripts run from start to 

finish uninterrupted, and that mission-specific systems aboard the target vehicle operate 

in a manner consistent with the goals without being explicitly ordered to do so.  

Accordingly, the methods discussed in the remainder of this section make use of AVCL 

MetaCommand behaviors to embed goal-specific information in the script when 

appropriate.  For example, the script generated to accomplish a Search goal includes a 

waypoint pattern over the area that provides the requisite probability of detection.  The 

entire script executes from start to finish uninterrupted after which the script 

corresponding to the next goal can begin.  Finally, the script includes MetaCommand 

behaviors describing the objectives of the search, but it is assumed that the autonomous 

vehicle will use its sensors and mission systems to locate the correct targets regardless. 

2. Decision-Tree-Based Generation of Task-Level Behavior Scripts 
The process by which autonomous vehicle missions are manually developed is 

not significantly different than the process by which manned or remotely operated vehicle 

missions are planned.  The process typically begins with a formal or informal analysis of 

the mission’s objectives, the capabilities of the vehicle, and the characteristics of the 

operating area, then ends with the development of a suitable mission script.  Utilizing the 

same information that a human operator might use in designing a mission, this process 

can be automated for the goal-types available in AVCL.  Complete planning for the 

accomplishment of a specific goal can be divided into two steps:  planning the transit to 

the operating area and planning the in-area activities to successfully accomplish the goal.  

The remainder of this section covers goal-specific, in-area planning and requirements for 

global path-planning between operating areas is discussed later in this chapter. 

A straightforward mission-planning methodology that can be applied to the 

autonomous vehicle domain relies on a set of Boolean propositions describing 
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characteristics of the operating area and goal.  Inference rules implemented as a decision 

tree are then used to correlate the propositions to a behavior-sequence template 

appropriate to the circumstances.  When the template is applied, vehicle and area 

characteristics are incorporated to generate a specific sequence of task-level behaviors 

that can be executed to accomplish the goal. 

As an example, consider the AVCL goal of Figure 6.1 calling for the search of a 

rectangular area.  The inference rules corresponding to an area search goal with a 

rectangular (but not square) operating area are able to determine a suitable search pattern 

that can provide the requisite coverage, consisting of a series of parallel lines that 

progress from one side of the operating area to the other as depicted in Figure 6.2.  This 

pattern is formally referred to as a parallel-track pattern in the International Aeronautical 

and Maritime Search and Rescue Manual (IMO and ICAO, 98).  The parallel-track 

template generates the specific waypoint series based on area length, width and 

orientation and vehicle sensor sweep width—defined in the Navy Search and Rescue 

Tactical Information Document as the distance “obtained by reducing the maximum 

detection distance…so that scattered targets which may be detected beyond the limits are 

equal in number to those which may be missed within those limits” (CNO, 97). 

 
Figure 6.1.   An AVCL Goal Calling for the Search of a Rectangular Area with a 

Required Probability of Detection of 0.8 

 
<Goal id="Goal1"> 
   <Search datumType="area" requiredPD="0.8"/> 
   <OperatingArea> 
      <Rectangle> 
         <NorthwestCorner> 
            <XYPosition x="75000" y="-27500"/> 
         </NorthwestCorner> 
         <Width value="25000"/> 
         <Height value="75000"/> 
         <Orientation value="30"/> 
      </Rectangle> 
   </OperatingArea> 
   <Timing start="1800" stop="5400"/> 
</Goal> 
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Figure 6.2.   A Parallel-Track Search Pattern that can be Executed by a UAV to 

Accomplish the AVCL Goal Specified in Figure 6.1 

 
For a number of goal types, the term “decision tree” is a bit misleading since only 

one template (i.e., one general method of accomplishing the goal) was developed during 

this work.  A single template obviously simplifies the task-level behavior sequence 

generation in that it does not require the use of propositions or inference rules, although 

vehicle, area and goal characteristics are still used to generate specific task-level behavior 

sequences.  Goals that require the vehicle to jam or monitor electronics transmissions, 

illuminate an area or relocate to another geographic position all fall into this category.  

MonitorTransmissions, IlluminateArea and Jam goals, for instance, are accomplished 

simply by transiting to the center of the designated operating area and turning on the 

appropriate sensor, illuminator or jammer.  MetaCommand behaviors are used to indicate 
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sensor, illuminator or jammer on and off times.  Reposition goals, on the other hand 

require no goal-specific planning whatsoever since they are considered successful when 

the vehicle completes the transit to the new operating area.  From a pre-mission 

standpoint, planning for Rendezvous goals is the same as for Reposition goals (with the 

addition of MetaCommand behaviors identifying the rendezvous target) since the actual 

location of the rendezvous target within the operating area is not known ahead of time. 

Planning for the remaining goal types is somewhat more complicated since there 

are a number of potential ways that each can be accomplished.  However, they do share 

one significant aspect that greatly simplifies the overall process.  Inherent in the 

accomplishment of each of these goal types is the requirement to search (or methodically 

cover) the operating area.  For instance a patrol goal uses a repeating coverage pattern of 

the operating area, and a SampleEnvironment goal is accomplished by sweeping the area 

while the environmental sensors accumulate data.  Impracticality of pre-mission script 

generation notwithstanding, even Attack, Demolish and Decontaminate goals require a 

search for the target or contaminant.  For the purpose of pre-mission script generation, 

therefore, scripts for the accomplishment of these goal types can be generated by tailoring 

a search decision tree depicted in Figure 6.3 to match specific goal requirements. 

In addition to the parallel-track pattern, the International Aeronautical and 

Maritime Search and Rescue Manual defines a number of patterns that might be utilized 

by autonomous vehicles to provide search coverage for a prescribed area.  The search 

patterns described in Figure 6.4, either defined in or adapted from the International 

Aeronautical and Maritime Search and Rescue Manual, form the basis of the search 

pattern templates of the search planning decision tree of Figure 6.3. 

The first branch of the decision tree is determined by the focus of the search, 

specifically, whether the search is to focus on a single point (the centroid of the area) or 

provide for equal coverage of the entire area.  The AVCL Search goal explicitly specifies 

this value using the datumType attribute (which can have a value of either “point” or 

“area”).  Searches corresponding to all other AVCL goal types provide for coverage of 

the entire area.  Propositions used in the remainder of the decision tree are based on the 

characteristics of the area to be searched and the sweep width of the vehicle sensor. 
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Figure 6.3.   A Decision Tree for Determining an Appropriate Search Pattern Based on 

the Characteristics of the Vehicle, Operating Area, and Search Type 

 

 
Figure 6.4.   Preplanned Search Patterns Available for use in Accomplishing AVCL Goals 

(After:  IMO and ICAO, 98) 

Parallel-track pattern:  a sequential series of equally spaced 
parallel tracks.  This pattern is useful in providing for uniform 
coverage of a large area when the search target can be located 
anywhere in the area with equal probability. 

Expanding-square pattern:  a pattern starting at the center of a 
square area and expanding outward through a series of 90 degree 
turns and increasingly long legs.  This pattern provides uniform 
coverage of the search area and is useful when the search area is 
potentially large, but the search target is most likely located near 
the center of the area. 

Sector pattern:  a pattern starting at the center of a circular area 
and dividing the area into pie-shaped wedges using a series of 
outbound and inbound legs.  This pattern provides repeated coverage 
of the center of the area with less coverage at the edges and is 
useful for thorough coverage of small areas when the search target 
is most likely located near the center. 

Expanding-rectangle pattern:  similar to an expanding-square 
pattern, this pattern expands at different rates as proscribed by 
the length to width ratio of the rectangle.  This pattern provides 
thorough (but slightly uneven) coverage of a rectangular area.  It 
is useful in the search of potentially large areas when the search 
target is most likely located near the center of the area. 

Shrinking-square pattern:  starts at the outer edge of the area and 
proceeds towards the center through a series of 90 degree turns and 
increasingly short legs (essentially the reverse of an expanding-
square pattern).  This pattern provides uniform coverage of the area 
and can be used when the search target can be located anywhere in 
the area with equal probability or if it is most likely located away 
from the center of the area. 
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For point-focus searches, the next proposition in the tree is dependent on the 

radius of the area’s bounding circle relative to the track spacing (computed using 

Equation 6.1) of the search pattern.  If the bounding circle radius is less than twice the 

track spacing, then a sector pattern can be used to provide an efficient and highly focused 

search.  For larger areas that are roughly circular (specified as a circle or the search area 

to bounding circle area ratio is greater than 0.7), an expanding-square pattern with the 

first leg aligned with the vehicle’s inbound heading is used.  If the area is roughly square 

(oriented bounding box length to width ratio greater than 0.8 and area-to-oriented-

bounding-box area ratio greater than 0.7) then an oriented-bounding-box-aligned 

expanding-square pattern is used.  Finally, if the area is rectangular, but not square (area 

to oriented bounding box area ratio greater than 0.7) then an oriented-bounding-box-

aligned expanding-rectangle pattern is used.  If none of these proposition values is true, 

none of the predefined patterns applies.  The method for generating search patterns for 

these areas is discussed in the next section. 
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The decision process  for area searches is significantly simpler.  If the area is 

roughly square or roughly circular, then an oriented-bounding-box-aligned shrinking-

square pattern is used.  If it is roughly rectangular but not square, a parallel-track pattern 

is used.  If the area is irregularly shaped, then none of the predefined patterns is 

applicable, so the planning techniques discussed in the next section are used instead. 

Once the type of pattern to be utilized has been determined, the actual waypoints 

can be generated without difficulty.  The required probability of detection and the 

vehicle’s sensor sweep width (W) are used to determine the search pattern track spacing 

(S) using Equation 6.1.  Based on the tables in (CNO, 97), Equation 6.1 indicates that a 

single-search probability of detection of 0.8 calls for a track spacing equal to the sweep 

width.  The track spacing and the oriented-bounding-box of the operating area are used to 

determine the number of search legs are required by the pattern.   The final step in 

waypoint generation is to clip out-of-area legs to keep the vehicle within the boundaries 

of the operating area.  The result of out-of-area clipping is a pattern along the lines of the 
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rounded-corner-out expanding-square pattern depicted in Figure 6.5 corresponding to a 

point-focused search of a circular operating area. 

 
Figure 6.5.   An Expanding-Square Search Pattern for use by a USV in Accomplishing a 

Point-Focused Search of a Circular Operating Area 

 

3. Use of Planner-Generated Search Pattern Scripts 

a. Overview 
As the decision tree of Figure 6.3 indicates, there are situations to which 

none of the search patterns discussed in the preceding section can be easily applied.  

These cases typically involve operating areas consisting of irregularly shaped (most 

frequently concave) polygons along the lines of the area depicted in Figure 6.6 that are 

not conducive to the uniform and repeating nature of predefined search patterns. 
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A number of options are potentially available to address this issue.  

Among the most obvious is to generate a predefined search pattern to fit the operating 

area’s oriented bounding box and clip the search legs that cross the area boundaries.  This 

approach is, in fact, how patterns are generated for operating areas that are only “slightly” 

irregular when the decision tree of Figure 6.3 is used.  For more irregular areas, however, 

these patterns can be inefficient since they often repeatedly transit some parts of the area 

in order to provide coverage for more remote sections.  Further, when the operating area 

is concave, it is possible for search legs to begin and end within the area but go outside 

the area during transit, increasing the complexity of segment clipping and further 

decreasing the efficiency of the final search pattern.  Both of these phenomena are 

illustrated in     Figure 6.6, particularly in the eastern portion of the area where the edge is 

transited multiple times to ensure coverage of the northeastern and southeastern corners. 

 
Figure 6.6.   An Irregularly Shaped Operating Area and Overlaid Parallel-Track Search 

Pattern that has been Adjusted to Avoid Out-Of-Area Excursions 
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Another potential approach might be to implement additional predefined 

patterns to more naturally fit more complex shapes.  Ultimately, however, this amounts to 

a workaround that might mitigate the difficulty of fitting predefined search patterns to 

arbitrary polygonal operating areas, but does not eliminate it.  Increasing the number of 

available patterns and increasing the complexity of the decision tree may be enable the 

application of further predefined patterns to more complex areas, however areas for 

which no predefined pattern is ideal may still be encountered on occasion.  

A more flexible and universally applicable solution is to incorporate a 

methodology for planning a search pattern specific to the operating area into the decision 

tree as depicted in Figure 6.7.  The planner must quickly generate a sequence of 

waypoints that provide effective coverage (i.e., commensurate with the required 

probability of detection) of areas for which preplanned patterns are not well-suited.  

Numerous artificial intelligence planning and search methods might be applied and upon 

inspection, the AVCL task-level behavior set appears suitable for this purpose.  The 

waypoint behavior in particular has inherent postconditions (i.e., the vehicle is at a new 

position and area around the path is searched) that can be used to define a search graph. 

 
Figure 6.7.   A Decision Tree for Determining an Appropriate Area-Search Pattern that 

Relies on Artificial-Intelligence Planners for Irregularly Shaped Areas 

 
A number of planning and search methods including GraphPlan, breadth-

first search, branch-and-bound search, A* and hill-climbing search were considered.  Of 

these, search-graph depth and high branching factors ruled out the uninformed search 

algorithms (i.e., those that consider all transitions equal and do not order state evaluation 
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based on their relationships to the goal) such as GraphPlan and breadth-first search.  A 

pure branch-and-bound approach proved impractical for similar reasons, as did many A* 

implementations.  Ultimately, potentially acceptable performance was obtained using two 

A* search implementations, a hill-climbing search, and a heuristic approximation of the 

Traveling Salesman Problem.  Further analysis follows. 

b. A-Star (A*) Based Search-Pattern Development 

The underlying structure of all three search-based candidate algorithms is 

identical.  The search area is covered with a hexagonal grid centered at the area’s centroid 

with the diameter of each hexagon set to 0.75 times the computed track spacing (S).  A 

search-graph state is defined by the position of the last waypoint in the candidate search 

pattern, the heading (ψ) of the vehicle upon reaching the location, and the list of 

hexagons that have been visited by the partial pattern.  A hexagon is considered visited if 

the pattern’s track passes within S/2 meters of the hexagon’s center.  Potential successor 

states consist of all states that correspond to a vehicle transit from its current position to 

the center of a hexagon that has not yet been visited.  The set of goal states consists of all 

states with no unvisited hexagons.  The search pattern, therefore, consists of the sequence 

of vehicle positions in the state sequence from the start to the goal. 

The basic A* search relies on two metrics:  the actual cost of a partial path 

to a state, and the estimated remaining cost from that state to the goal.  The partial path 

cost is computed simply as the sum of the cost of individual steps.  For this A* 

implementation, the step cost for a transition from state Xi to state Xj is defined by 

Equation 6.2 where distance(Xi,Xj) is the Euclidean distance between the locations 

corresponding to Xi and Xj, and ψ∆  is the magnitude of the turn required at the beginning 

of the transit.  The justification for the distance portion of the cost is fairly obvious, while 

the turn element of the equation biases the search to favor straighter paths.  The estimated 

remaining cost function is defined by Equation 6.3 where k is a constant and hexagon(X) 

is the number of hexagons visited as of state X.  The constant, k, is used to bias the search 

in favor of a particular type of solution.  Lower values for k favor low-cost solutions at 

the expense of increased search time (setting k to 0 results in a pure best-first search) 

while higher values bias the search towards solutions that require fewer steps.  The A* 

implementation tested here uses a k of 5.0 and heavily biases the search towards patterns 
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that visit the most hexagons with the fewest number of waypoints, resulting in solutions 

similar to the pattern depicted in Figure 6.8. 
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Figure 6.8.   A Search Pattern for an Irregularly Shaped Operating Area Generated by 

an A-Star (A*) Search Biased Towards Patterns with Fewer Waypoints 

 
Search patterns generated with this A* search tend to consist of legs that 

transit from one side of the area to the other in a rather disorganized manner.  

Additionally, they often repeatedly cover portions of the area as they traverse from side 

to side.  This is counter to the implicit goal of generating a pattern that is more efficient 
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(i.e., shorter in length) than an adjusted predefined pattern.  Rather, A*-generated plans 

are typically much longer than adjusted parallel-track patterns, and are only occasionally 

more efficient than adjusted square or rectangle patterns.  Unfortunately, significant 

reduction in the value of k to favor more efficient search patterns quickly increases 

search-tree depth to an unacceptable degree. 

c. Combined Best-First / A* Based Search-Pattern Development 

In an attempt to overcome the shortcomings of this A* implementation, a 

modification to the basic A* algorithm is introduced.  If the value of k is lowered (to 0.25 

in this case), the cost of the partial path becomes more important than the estimated 

remaining cost when evaluating partial solutions.  Thus, shorter partial patterns that make 

some progress towards the goal are favored over longer ones that make more progress.  In 

order to minimize the time spent evaluating dead-ends, the A* agenda is pruned 

periodically using a best-first heuristic.  After evaluating a predetermined number of 

candidates (five in the tested implementation), the search commits to the most promising 

partial plan and deletes all other candidates from the agenda.  The A* search is restarted 

using the most promising partial plan as the start state.  This process repeats until the goal 

is reached. 

An important restriction during this search is that the ability to backtrack 

is limited.  It is therefore crucial that the goal remain reachable from any state to ensure 

the discovery of a solution.  The search graphs described here meet this requirement.  

Since the heuristic for determining potential successor states allows the partial pattern to 

be extended to any unvisited hexagon, it is evident that all hexagons in the search grid 

either have been or can be visited from any state in the graph.  However, generated 

patterns may require clipping of legs that cross the concave portions of the polygon. 

Search patterns generated by this combined best-first / A* algorithm, such 

as the one depicted in Figure 6.9, tend to be more efficient than those generated by the 

previously discussed A* search (a specific comparison of the various search-pattern 

planners is provided later in this section).  Based on numerous test cases, the average 

total distance traveled in executing search plans generated by this algorithm are 

approximately 13 percent shorter than those generated by the A* planner.  Unfortunately, 

these plans still are still less efficient than adjusted parallel-track patterns and only 
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improve on adjusted square patterns in six of ten test cases.  Thus, they do not accomplish 

the goal of generating area-specific search plans that improve upon area-adjusted 

predefined patterns.  Additionally, the average run time of the best-first / A* planner is 

over six times longer than the run time of the A* planner.  From an implementation 

standpoint, however, this does not rule out the combined search.  Since the search 

commits to promising partial plans early in the search process, the total planner run time 

is not as important as it is for planners that do not generate any usable results until they 

have run to completion. 

 
Figure 6.9.   A Search Pattern for an Irregularly Shaped Operating Area Generated using 

a Combined Best-First / A* Search 
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d. Use of Hill-Climbing Search for Area Search Pattern Generation 

Despite the improved efficiency of search patterns generated by a 

combined best-first / A* search, the example depicted in Figure 6.9 still leaves significant 

room for improvement.  The improvement over the previous algorithm does, however, 

provide evidence that a pure best-first approach might provide still-better results.  

Utilizing Equations 7 and 8 with k set to 0.25 to favor shorter-path solutions, a hill-

climbing search is easily implemented.  An extension of the combined best-first / A* 

search, a hill-climbing search is achieved by clearing the search agenda of all but the  

most-promising partial plan at each iteration.  As with the combined best-first / A* 

search, the lack of backtracking necessitates that the goal state be reachable from any 

state in the search graph. 

In virtually every test case, the search pattern generated using this search 

was shorter in length than the pattern generated using the A* or combined best-first / A* 

search implementations (the average distance traveled by the test case patterns was 25 

percent less than the A* average distance).  Additionally, the average planner run times 

were almost three times faster than those of the combined best-first / A* planner (but 

almost twice as slow as the A* planner).  Discouragingly, however, the efficiency of 

plans generated using this algorithm still do not consistently beat that of adjusted parallel-

track patterns, averaging slightly longer patterns and actually improving on the adjusted 

parallel-track length in only one of ten test cases.  The pattern depicted in Figure 6.10 

provides an example of why this shortfall occurs.  This plan covers a number areas 

multiple times, recrossing its own path on four occasions and passing within close 

proximity to previous legs on two more.  Nevertheless, these patterns are nearly always 

shorter than adjusted expanding or shrinking-square patterns and frequently shorter than 

adjusted parallel-track patterns.  This improvement coupled with the relative speed of 

planner execution make this hill-climbing implementation potentially useful. 
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Figure 6.10.   A Search Pattern for an Irregularly Shaped Operating Area Generated using 

a Hill-Climbing Search that does not Allow Backtracking 

 

e. Search Pattern Development Using Iterative Improvement of a 
Traveling Salesman Problem Solution 

The most successful methods of planner-based search pattern generation 

implemented in the course of this work treated the search as an adaptation of the traveling 

salesman problem.  Although known to be of nondeterministic-polynomial-time-hard 

(NP-hard) complexity, it is possible to develop a “good” if not “optimal” solution much 

more quickly (Corman, et al., 90).  Similar to the search-based pattern planners, the 

traveling-salesman-problem-based algorithm divides the search area into hexagons that 

are to be visited but, unlike the previous methods, the center of each hexagon must 

actually be used as a waypoint in the search pattern.  This visitation criteria allows 

increasing hexagon diameter to match track spacing without sacrificing coverage.  When 
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the iterative improvement algorithm (described in pseudocode in Figure 6.11) begins, the 

search points (i.e., the set of hexagon centers) are loaded into an array representing 

visitation order.  The only stipulation is that the first element must be the search starting 

point (i.e., the area center for a point-focused search or the closest search point to the area 

entry otherwise).  Each array element (with the exception of the first) is iteratively 

compared against other the elements.  If the path defined by swapping the elements is 

shorter than the current path, the elements are swapped.  This process is repeated until no 

further improvements are obtained.   

 
Figure 6.11.   Progressive Improvement of a Traveling Salesman Problem Solution to 

Generate Efficient Search Patterns for Arbitrarily Shaped Areas 

 
Search patterns generated using this algorithm are easily the most efficient 

of all of the planner-generated patterns discussed thus far, averaging a 40 percent 

improvement over patterns generated by the A* search for the test cases.  As the example 

of Figure 6.12 indicates, these patterns gravitated towards relatively regular patterns with 

few intersections.  Despite a slight susceptibility to convergence on local minima (a 

common characteristic of iterative improvement algorithms), these patterns were also 

shorter than the adjusted parallel track pattern in seven of ten test cases.  Finally, the run 

 
Let searchPts =  
    array of search area grid hexagon centers 
Let startD = 0 
Let endD   = pathDistance(searchPts) 
While endD != startD 
    For pt1Index = 1 to count(searchPts) – 1 

             For pt2Index = 
                 pt1Index + 1 to count(searchPts) 

            Let d1 = pathDistance(searchPts) 
            swap(searchPts, pt1Index, pt2Index) 
            Let d2 = pathDistance(searchPts) 
            If d1 < d2 
                swap(searchPts, pt1Index, pt2Index) 
    startD = endD 
    endD   = min(d1, d2) 
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time of the traveling-salesman-problem-based planner was at least an order of magnitude 

better than any of the previously discussed planners in all test cases. 

 
Figure 6.12.   A Search Pattern for an Irregularly Shaped Operating Area Generated using 

the Traveling-Salesman-Problem-Based Algorithm of Figure 6.11 

 

f. Iterative Improvement of Traveling Salesman Problem Search 
Patterns using Simulated Annealing 

One pitfall of the algorithm of Figure 6.11 is the tendency to converge on 

local minima.  In many instances, the initial traversal sequence contains loops and 

patterns that cannot be untangled by pair-wise exchange based solely on the relative 

quality of the pre- and post-switch patterns (the pattern depicted in Figure 6.12 contains 

one such loop).  For this reason, a number of traveling salesman problem approaches 

incorporate random components that allows the search to explore the search space more 

freely.  Among these are genetic algorithms and simulated annealing (Russell and 

Norvig, 03). 
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The algorithm of Figure 6.11 is easily augmented to incorporate simulated 

annealing by modifying the conditions upon which points in the sequence are switched.  

Equation 6.4 is used to determine a probability that two points i and j are switched even if 

the resulting path (pnew) is longer than the original one (pold).  The points are always 

switched it the resultant path is shorter.  The variables t and tmax are the current and 

starting “temperatures” of the annealing system, respectively, and k is a weighting factor 

applied to the difference in path lengths (the best results were obtained using a value of 

30).  Cooling in the implemented system is linear to a minimum of zero (at which point 

the algorithm continues according to Figure 6.11).  The equation makes seemingly less 

than optimal switches more likely (to a maximum probability of 0.5) while the system is 

still “warm” and if the switch results in a path that is only slightly longer than the original 

path. 
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          (Eq. 6.4) 

Typical results of the simulated-annealing-based traveling salesman 

problem algorithm described above are along the lines of the search pattern depicted in 

Figure 6.13 which is substantially shorter than even the pattern generated by the previous 

traveling salesman problem iterative improvement algorithm.  However, the stochastic 

nature of the selection makes results nondeterministic and similar performance is not 

guaranteed.  For this reason, simulated-annealing implementations often use multiple 

searches to increase the likelihood of obtaining at least one near-optimal solution.  This 

approach might be applicable for the pre-mission search pattern generation described in 

this chapter, but is probably impractical for on-vehicle control as described in Chapter 

VII.  The usefulness of a planner such as this one for actual vehicle control depends on 

factors such as the likelihood of a suboptimal plan and the degree of potential 

suboptimality.  These and other characteristics of the simulated-annealing traveling 

salesman problem iterative-improvement algorithm are discussed in the next section. 
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Figure 6.13.   An Irregular Area Search Pattern Derived using Simulated-Annealing-Based 

Iterative Improvement of a Traveling Salesman Problem Solution 

 

g. Comparing Automated Search Pattern Generation Techniques 
From the preceding discussion, it is clear that the traveling-salesman-

problem-based search pattern planners outperform the search-based planners in both the 

efficiency of the generated search plans and the execution speed of the planners 

themselves.  Figures 6.14 through 6.16 provide a more detailed comparison of all five 

planners.  Because of its nondeterministic nature, the average, minimum, and maximum 

values for 1000 runs of the simulated annealing planner are depicted.  Where relevant, a 

comparison against expanding-square and parallel-track patterns is provided as well. 

Figures 6.14 and 6.15 provide a comparison of the search-pattern length 

for both planner-generated and adjusted preplanned patterns for ten concave-polygonal 

areas along the lines of the one depicted in the previous examples.  Figure 6.14 depicts 

absolute pattern length while Figure 6.15 depicts normalized length using the area-
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adjusted parallel-track pattern as the baseline.  These graphs quantify the previous 

observations concerning the relative efficiency various planner-generated plans.  The 

traveling-salesman-problem-based planners are the only ones that produced better results 

than the area-adjusted parallel-track pattern on a reasonably consistent basis.  The 

simulated annealing planner, in particular, performed well, providing the best solution in 

eight of ten test cases.  In fact, even the worst-case simulated-annealing results improved 

upon the area-adjusted parallel track pattern in half of the test cases.  The traveling-

salesman-problem-based and hill-climbing planners were all able to generate patterns of 

shorter length than the area-adjusted expanding or shrinking-square or rectangle patterns. 

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 Avg
Search Area

Se
ar

ch
 P

la
n 

Tr
ac

k 
Le

ng
th

 (m
)

OBB-Aligned Expanding Square OBB-Aligned Parallel Track
Best Search Time A* Combined Best-First / A*
Hill Climbing TSP Iterative Improvement
TSP Simulated Annealing  

Figure 6.14.   A Comparison of Absolute Track Length of Planner-Generated and Area-
Adjusted Preplanned Search Patterns for Concave-Polygonal Areas 

 
Figure 6.16 shows the planner run times in generating plans for the same 

ten concave-polygonal areas.  The run times of the combined best-first / A* planner are 

significantly longer than the next slowest planner.  Most striking, however, is the degree 

to which traveling-salesman-problem-based planners outperform the search-based 

planners.  Ultimately this is not surprising since the computational complexity of Figure 

6.11’s algorithm is ( )mnO 2  where n is the number of search points and m is the number 

of iterations that continue to show improvement.  This is not insubstantial by any means, 

but it is significantly less complex than the potential exponential complexity of the A* 
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search.  Despite the fact that the combined best-first / A* and hill-climbing searches 

significantly reduce complexity by eliminating most search-tree branches or minimizing 

search-tree depth, Figure 6.16 provides an indication that their complexity as 

implemented still exceeds that of a low-order polynomial algorithm by a great deal.  The 

increase in run time of the simulated annealing planner over that of the basic traveling-

salesman-problem-based planner results from the continuation of the algorithm until the 

system temperature reaches zero 
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Figure 6.15.   A Comparison of Normalized Track Length of Planner-Generated and Area-
Adjusted Preplanned Search Patterns for Concave-Polygonal Areas 

 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 Avg
Search Area

Pl
an

ne
r R

un
 T

im
e 

(s
ec

s)

Best Search Time A* Combined Best-First / A* Hill Climbing
TSP Iterative Improvement TSP Simulated Annealing

 
Figure 6.16.   Comparison of Run Times for Search Pattern Planners 
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The data depicted in Figures 6.14 through 6.16 provide evidence to 

support the use of the traveling-salesman-problem-based planners for the generation of 

search plans for irregularly shaped operating areas.  Further, the observation that the 

worst-case solutions generated through simulated annealing are both rare (i.e., the 

average solution is significantly closer to the best-case solution than the worst-case one) 

and on par with basic traveling salesman problem solutions indicates that the this planner 

is suitable not only for pre-mission use, but for on-vehicle use as well. 

It is worth noting that operating areas of this sort (i.e., irregular-polygonal 

areas) are the exception rather than the rule.  The majority of search areas can be 

classified as circles, rectangles or concave polygons.  For these area types, preplanned 

patterns still provide the most intuitive and straightforward coverage. 

4. Global Path Planning in Script Generation 

Returning to the original motivations for this chapter, the second requirement for 

converting a declarative agenda to a task-level behavior script is global path planning 

between operating areas.  For pre-mission planning purposes, this amounts to planning a 

path from either the specified launch position (for the first goal in the mission) or the last 

geographic position in the sub-script corresponding to a particular goal to the closest 

point in operating area of the next goal to be attempted or to the recovery position if the 

mission is complete. 

Much recent research in the area of mobile robot path planning has focused on 

searches along the lines of the D* search.  This search algorithm is similar to the A* 

algorithm in its use of actual partial path cost and estimated remaining path cost 

functions.  It is often considered more suitable for real-time path planning, however, 

because it allows run-time modification of the incurred cost and estimated remaining cost 

for individual states as the search progresses.  This makes the D* algorithm inherently 

more adaptable to the dynamic environments in which autonomous vehicles operate than 

many competing algorithms.  (Ferguson and Stentz, 05) 

As the proposed common autonomous vehicle data model evolves, it is likely that 

it will take on a more dynamic aspect.  For the present, however, it does not include 

features that make D* inherently more desirable than other algorithms.  In particular, 
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where pre-mission use is concerned, any algorithm features specifically supporting 

dynamic situations are superfluous (this is no longer the case when the planner is used for 

real-time vehicle control as described in Chapter VII).  In addition, from the standpoint of 

the currently implemented common data model, path planning between operating areas is 

not dynamic in nature.  All that is required is to plan a path that does not enter any avoid 

areas (i.e., the possibly dynamic cost of traversing a particular region is not relevant).  

Localized path planning and obstacle avoidance between global waypoints is conducted 

at a lower level of control than is currently addressed by the AVCL agenda.  For these 

reasons, a fairly simple best-first search is used for path planning between operating 

areas. 

Like operating areas, avoid areas are defined in an AVCL agenda using points, 

circles, rectangles or polygons.  The algorithm begins with an agenda containing only a 

candidate path directly from the start to the goal.  At each iteration of the search, the 

shortest candidate path in the agenda is tested.  If this path does not enter any avoid areas, 

the best path has been discovered.  If it does intrude into one or more avoid areas, it is 

removed from the agenda and two new candidate paths are added for each avoid area that 

the path enters.  New candidate paths are generated by removing the offending path 

segment and replacing it with two segments:  one from the start of the original segment to 

a tangent point on the edge of the avoid area and one from the tangent point to the 

original segment’s end.  A simple example is provided in Figure 6.17.  The initial 

candidate intrudes into two avoid areas, so four new candidate paths are added to the 

agenda.  In the second iteration, the shortest candidate enters one avoid area, so two more 

candidates paths are added to the agenda, one of which avoids all prohibited areas.  Since 

there is a candidate path that is shorter than the newly generated viable plan, the ultimate 

solution is not encountered until the fourth iteration of the search. 

Despite its simplicity, this search works well in the role of pre-mission path 

planning.  Additionally, since an AVCL agenda essentially divides the world into two 

types of regions (i.e., those that the vehicle is to avoid and those that the vehicle can 

enter), it can also be applied to run-time path planning at the agenda level (i.e., global 

path planning between operating areas).  Since the candidate path-selection criteria is 

equivalent to an A* search with a constant estimated remaining cost of zero and partial-
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path cost equal to the path’s length, the search can be guaranteed to find the shortest path 

from the start to the goal.  As the robustness of AVCL agenda descriptions increases and 

become more dynamic in nature, it is likely that this search will be less useful and other 

search algorithms along the lines of D* will become more attractive. 

 
Figure 6.17.   A Global Path-Planning Example using a Best-First Search to Discover the 

Shortest Path from Start (S) to Goal (G) that Bypasses all Avoid Areas 

 

C. INFERENCE OF DECLARATIVE MISSION GOALS FROM TASK-
LEVEL SCRIPTS 

1. Overview 
A second possible application of declarative missions is their generation from 

scripts.  Superficially, it might seem of limited use to convert an existing task-level 

behavior script to a declarative agenda, however this capability does have potentially 

important applications.  If autonomous vehicles are to operate as an integral part of a 

larger command and control system, they will be required to exchange information with 

systems outside of the autonomous vehicle domain.  In most instances, the larger intent of 

a mission is of more use to command and control systems than a sequence of low-level 

commands.  To accomplish this level of data exchange, methodologies must be 

developed to reasonably infer the intent of a series of task-level behaviors and to translate 

that intent into a declarative agenda.  Additionally, this ability can improve data analysis 
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of archived missions by providing multiple levels of interpretation of individual missions.  

This approach is particularly advantageous if the semantic richness of the autonomous 

vehicle data model described here is extended into a more robust ontology, making the 

techniques appropriate for use with Semantic Web applicable. (Daconta, et al., 03). 

The process for developing an appropriate declarative goal for a sequence of task-

level behaviors consists of two parts.  The most difficult is the inference of the 

appropriate goal type.  Once a goal type has been selected, the actual derivation of goal 

parameters and the generation of the AVCL goal element itself is straightforward. 

Three important assumptions are made when inferring goal types from task-level 

behavior scripts.  The first is that the script corresponds to a single goal (and the transit to 

and from the operating area) as opposed to a series of goals, so the entire script is 

considered at once.  This assumption is made primarily to simplify the implementation 

requirements, but the methods discussed in the following sections can be applied 

piecemeal to behavior sub-scripts if translation to a series of goals rather than a single 

goal is desired.  The second assumption is that the task-level behavior sequence can be 

translated into a goal that is successfully completed.  Finally, no attempt is made to infer 

the presence or location of avoid areas.  It is assumed that the task-level behavior script 

calls for a transit to directly to and from the operating area.  As with the single-goal 

assumption, this is intended to simplify the overall implementation and does not prevent 

future inclusion of sub-script-level analysis that considers the possibility of indirect 

transit between operating areas. 

Two further points concerning goal-type inference bear mentioning.  The first is 

that the process can be greatly simplified if the task-level behavior script is annotated 

using MetaCommand behaviors.  However, the methods described here are intended to 

work with annotated or unannotated scripts, so they do not rely MetaCommand 

information to infer goal-types.  Nevertheless, the presence of MetaCommand behaviors 

can improve the performance of these methods.  Ultimately, the development of a more 

robust ontology can enhance the ability of scripts to be self-documenting and further 

simplify their interpretation. 
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The second point relates to the fact that the task-level behavior set in its current 

form does not fully implement all of the available AVCL goal types.  There is no 

requirement to attempt to infer goal types that cannot be expressed as task-level behavior 

scripts.  The implementations developed in this work, therefore, classify scripts as one of 

five possible goal types.  The script classifiers will conclude that the most likely intent of 

a mission is to perform a point-focused search, perform an area search, patrol an area, 

monitor some sort of activity or transmissions, or simply transit to a new location. 

2. Mission Goal-Type Inference using Case-Based Reasoning 
Two methods were developed for inferring the intent of a series of task-level 

scripts.  The first is case-based reasoning, a fairly simple form of machine learning that 

compares the characteristics of an instance of unknown classification against the 

characteristics of a set of known instances.  The unknown case is classified based on the 

classifications of the most closely matching known instances (Mitchell, 97). 

The case-based reasoning system implemented for script classification computes 

values for the 15 characteristics described in Figure 6.18.  Each is defined on an inclusive 

range of zero to one and is assigned a weight, or importance as well.  The “distance” of 

an unknown instance (x) from a known instance (r) from the set of known recall cases (R) 

is computed using Equation 6.5 where wi is the weight assigned to characteristic i 

(individual weights are listed in Table 6.1), ci is the function determining the 

characteristic value.  The recall set consists of 75 “typical” task-level behavior scripts 

divided more or less equally between the potential vehicle and goal types. 

   ( ) ( ) ( )
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= −∑            (Eq. 6.5) 

Among the advantages of case-based reasoning are its simplicity and its intuitive 

nature—a specific classification is easily justified by noting its similarity to a known 

instance.  Case-based reasoning is also more likely to work reasonably well when a 

limited number of recall cases are available than are many other classification methods 

(provided the set of recall cases adequately spans the domain).  Further, “training” a case-

based reasoning system is easily accomplished by adding instances that are incorrectly 

classified to the recall set along with their correct classification. 
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Figure 6.18.   Properties used to Classify AVCL Task-Level Behavior Scripts using Case-
Based Reasoning 

Stationary commands.  This characteristic is a measure of how much the script 
calls for a stationary vehicle and is computed as the ratio of stationary 
behaviors to total behaviors.  Behaviors meeting this criteria include Loiter and 
Hover behaviors, zero-value MakeKnots or MakeSpeed behaviors and Waypoint 
behaviors that are followed by a Wait behavior. 

Area coverage.  This characteristic is measures how thoroughly the track defined 
by the script covers the convex polygon containing the track.  It is computed as 
the ratio of swept area (track length times sweep width minus intersections and 
out-of-area coverage) to convex polygon area. 

Point focus.  This characteristic is a measure of how much the mission focuses on 
a single point close to the center of the area.  It is calculated by determining 
the maximum number of times a single point is visited and multiplying by a 
distance-from-area-center factor. 

Parallel tracks.  This characteristic measures the degree of parallelism in the 
legs of the mission.  It is computed as the ratio of the number of legs for which 
at least one of the next three legs is parallel (within five degrees) to the 
total number of legs in the mission 

Orthogonal tracks.  Similar to the parallel tracks characteristic, this 
characteristic is computed as the ratio of 90 degree (within five degrees) turns 
in the mission to the total number of turns. 

Multiple point visits.  This characteristic is a measure of how many of the 
points defined in the mission are used more than once.  It is computed as the 
ratio of points that are used more than once to the number of unique points used 
in the mission. 

Local finish.  This characteristic is a measure of the proximity of the final 
waypoint to the launch position, adjusted for the type of vehicle. 

Number of legs.  This characteristic is a measure of the number legs in the 
mission and is computed as the reciprocal of the number of waypoints. 

Sweep width ratio.  This characteristic is a measure of how small the operating 
area is relative to the sensor sweep width.  It is computed as the ratio of the 
stationary sweep area (the area of a circle of sweep width radius) to the area of 
the convex polygon containing the track. 

Center start.  This characteristic measures how quickly the script orders the 
vehicle to the center of the operating area.  It is computed based on the 
proximity of the nearest of the first three mission waypoints to the center. 

Fixed vertical.  Only relevant for UUV and UAV missions, this characteristic is a 
measure of the degree to which the script calls for a fixed depth or altitude.  
It is computed as the ratio of commands that call for a depth or altitude change 
to commands that can conceivably call for a change in depth or altitude. 

On surface.  Relevant only for UUV missions, this characteristic is a measure of 
the amount of time the vehicle spends on the surface and is computed as the ratio 
of the commands that call for the vehicle to be on the surface to commands that 
are capable of specifying depth. 

Uses search speed.  Based on default search speed, this characteristic is 
computed as the ratio of behaviors calling for the search speed (within 10 
percent of maximum vehicle speed) to speed-ordering behaviors. 

Uses patrol speed.  This characteristic is computed identically to the uses-
search-speed characteristic but uses the vehicle’s default patrol speed (which 
may or may not be the same as the default search speed). 

Uses transit speed.  Again, this characteristic is computed in the same manner as 
the uses-patrol-speed and uses-search-speed characteristics, but uses the 
vehicle’s default speed for transit between operating areas. 
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Characteristic Weight Characteristic Weight Characteristic Weight
Stationary 
Commands 1.00 Multiple Point Visits 0.25 Fixed Vertical 1.00 

Area Coverage 1.00 Local Finish 1.00 On Surface 0.20 
Point Focus 0.50 Number of Legs 1.20 Uses Search Speed 0.20 
Parallel Tracks 1.00 Sweep Width Ratio 0.50 Uses Patrol Speed 0.20 
Orthogonal Tracks 1.00 Center Start 1.00 Uses Transit Speed 0.20 

Table 6.1.   Characteristic Weights for Case-Based Reasoning Classification of Task-
Level Behavior Scripts 

 

Disadvantages of case-based reasoning include relative inefficiency arising from 

the need to compare unknown instances against each recall case.  Also an issue is the 

potential for a poor recall set (i.e., one that does not accurately reflect the population at 

large) to improperly bias classifications or to blanket the search space in such a way that 

they are more or less random.  This is especially an issue if some or all of the 

characteristic values or weights are poorly chosen.  (Mitchell, 97) 

3. Mission Goal-Type Inference using Naïve Bayes Reasoning  
The characteristics used by the case-based reasoning system for task-level-script 

classification are also potentially useful with other machine-learning methods.  A neural 

network or support-vector machine, for instance, might classify unknown instances based 

on the same characteristics.  Also potentially applicable are probabilistic techniques.  

These typically determine a maximum a posteriori hypothesis for unknown instance 

classification based on the probabilities of the instance’s characteristics.  Among the most 

common probabilistic learning methods are those relying on conditional probabilities and 

Bayes Theorem to compare the likelihood of all potential hypotheses.  The general form 

of the equation for the probability of a hypothesis (H) given observed characteristics (c1 

through ci) is given by Equation 6.6.  Unfortunately, the conditional probabilities on the 

right-hand side of the equation can be difficult to determine, so direct use of Equation 6.6 

is often impractical.  In cases where the values of some characteristics are influenced by 

the values of others (i.e., some characteristics are dependent on others), a common 

approach is to develop a Bayesian network reflecting the various dependencies.  If, on the 

other hand, if mutual independence of the characteristic values can be safely assumed, the 

equation can be rewritten as Equation 6.7.  Values for the individual probabilities in this 

equation are derived from the set of known instances, making Equation 6.7 easy to apply 
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in practice.  Referred to as naïve Bayes (because of the probably naïve assumption that all 

characteristic values are independent), this form of probabilistic learning was 

implemented for the purpose of classifying task-level behavior scripts. 
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Unlike the characteristics used by the case-based reasoning implementation, the 

characteristic values of Equation 6.7 are discrete, so the characteristics used by the case-

based reasoning system require modification.  The 12 characteristics used in the naïve 

Bayes implementation are described in Figure 6.19 and the associated conditional and 

unconditional probabilities are listed in Table 6.2.  These characteristics were chosen 

because of their relative independence as well as the potential that their values might be 

indicative of the script’s intent. 

The computational overhead of a probabilistic learning system along the lines of 

the naïve Bayes classifier is significantly reduced over that of a case-based reasoning 

system since the characteristics of individual recall instances are not required at run time 

(they are implicitly captured by the probabilities used in the equations). Additionally, the 

influence of individual characteristics on the outcome is essentially self adjusting in that 

the probabilities associated with characteristics that are not true solution indicators tend 

to be the same for all potential hypotheses.  This eliminates the need for the somewhat 

arbitrary process of tuning the weight applied to each characteristic.  It does not, 

however, alleviate the requirement to determine and calculate suitable characteristics. 

Among the most significant disadvantages of probabilistic machine learning in 

this application is a potentially insufficient number of known instances from which to 

derive probabilities.  In addition to the derivation of potentially invalid probabilities, the 

use of too few test cases can result in probabilities of 1.0 or 0.0 that can unacceptably 

bias the solution based on a single characteristic value.  In order to minimize this 

disadvantage, the probabilities in Table 6.2 were computed using all of the 104 available 

test cases, rather than just the 75 used in the case-based reasoning system.  Unfortunately, 
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even the use of all available test cases does not eliminate probabilities of 1.0 or 0.0.  In 

order to prevent these values from exerting too much influence on the solution, these 

probabilities were manually adjusted to values that are considered more realistic 

(indicated with italics in Table 6.2).  Additionally, useful data concerning the 

unconditional probabilities of the individual hypotheses is hard to come by.  In fact, it is 

likely that these probabilities are dependent on the overall role of the vehicle in question 

(e.g., military, industrial, scientific, etc.).  The current naïve Bayes implementation makes 

the assumption that all hypotheses are equally likely, effectively basing the ultimate 

classification solely on the conditional probabilities of the characteristics. 

Monitor 
Transmissions 

 
Patrol 

 
Reposition 

 
 

Characteristic (ci) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H)
Stationary Commands 0.8462 0.1538 0.0500 0.9500 0.0500 0.9500 
Area Coverage 0.0769 0.9231 0.8421 0.1579 0.5000 0.5000 
Point Focus 0.0500 0.9500 0.0526 0.9474 0.0500 0.9500 
Parallel Tracks 0.0500 0.9500 0.6842 0.3158 0.0500 0.9500 
Orthogonal Tracks 0.1538 0.8462 0.8421 0.1579 0.1667 0.8333 
Multiple Point Visits 0.0200 0.9800 0.8421 0.1579 0.0200 0.9800 
Local Finish 0.8462 0.1538 0.7895 0.2105 0.0010 0.9990 
Sweep Width Ratio 0.7692 0.2308 0.1579 0.8421 0.7500 0.2500 
Number of Legs 0.0750 0.9250 0.8947 0.1053 0.0750 0.9250 
Changes Speed 0.5385 0.4615 0.0500 0.9500 0.1667 0.8333 
Center Start 0.0500 0.9500 0.1053 0.8947 0.0833 0.9167 
Has Sectors 0.0250 0.9750 0.1000 0.9000 0.0250 0.9750 

Area Search Point Search   
Characteristic (ci) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H)

 
P(ci)  

Stationary Commands 0.0500 0.9500 0.0500 0.9500 0.1183  
Area Coverage 0.7000 0.3000 0.8421 0.1579 0.6452  
Point Focus 0.0500 0.9500 0.1579 0.8421 0.0430  
Parallel Tracks 0.5000 0.5000 0.6842 0.3158 0.4409  
Orthogonal Tracks 0.5333 0.4667 0.3684 0.6316 0.4624  
Multiple Point Visits 0.1000 0.9000 0.1579 0.8421 0.2366  
Local Finish 0.6000 0.4000 0.7368 0.2632 0.6237  
Sweep Width Ratio 0.0333 0.9667 0.0500 0.9500 0.2473  
Number of Legs 0.8667 0.1333 0.9474 0.0526 0.6559  
Changes Speed 0.0250 0.9750 0.0250 0.9750 0.0968  
Center Start 0.0667 0.9333 0.5789 0.4211 0.1613  
Has Sectors 0.0500 0.9500 0.2105 0.7895 0.0430  

Table 6.2.   Probabilities Used in the Naïve Bayes Classification of AVCL Task-Level 
Behavior Scripts (Italics Indicate Probabilities that were Manually Adjusted 

from Computed Values of 0.0 or 1.0) 
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Figure 6.19.   Boolean Characteristics used for Naïve Bayes Classification of AVCL Task-
Level Behavior Scripts

Stationary commands.  Similar to the characteristic used in the case-based 
reasoning system, this characteristic has a value of “true” if the ratio of 
behaviors that command the vehicle to remain stationary to behaviors capable 
of ordering a reposition is greater than 0.33. 

Area coverage.  This characteristic is computed as in the case-based-
reasoning system.  It is considered “true” if the area swept by the mission 
track (minus intersections and out-of-area sweep) is greater than 75 percent 
of the operating area. 

Point focus.  This characteristic is uses the same formula as in the case-
based reasoning system and has a value of “true” if the computed value 
exceeds 0.2. 

Parallel tracks.  This characteristic is based on the degree to which the 
mission has parallel tracks.  It has a value of “true” if at least 45 percent 
of the legs are parallel (within five degrees) to at least one of the next 
three legs. 

Orthogonal tracks.  Like the characteristic of the case-based-reasoning 
system, this characteristic is based on the vehicle turns commanded by the 
behavior script.  If at least 25 percent of the turns commanded by the script 
are approximately 90 degrees, then the characteristic has a value of “true.” 

Multiple point visits.  This characteristic measures the number of mission 
points that are visited more than once over the course of the mission.  If at 
least 25 percent of the mission’s waypoints are revisited, a value of “true” 
is assigned. 

Local finish.  Similar to the corresponding characteristic in the case-based 
reasoning system, this characteristic has a value of “true” if the task-level 
behavior script calls for launch and recovery at approximately the same 
position.  The distance threshold upon which the characteristic is based is 
dependent on the vehicle type. 

Number of legs.  This characteristic has a value of “true” if the mission 
script defines 10 or more legs not including transits to and from the 
operating area. 

Sweep width ratio.  As with the same characteristic in the case-based 
reasoning system, the sweep width ratio is a measure of how small the 
operating area is relative to the vehicle’s sensor sweep width.  It has a 
value of “true” if a stationary vehicle is capable of sweeping at least 75 
percent of the area. 

Speed changes.  This characteristic is a measure of how fixed the ordered 
vehicle speed is over the course of the mission.  If at least 33 percent of 
the behaviors capable of ordering a speed change do so, the characteristic 
has a value of “true.” 

Center start.  This characteristic has a value of “true” if one of the first 
three in-area waypoints is close to the center of the convex polygon defining 
the operating area. 

Has sectors.  The only naïve Bayes classifier characteristic that does not 
correlate to any characteristic of the case-based reasoning system, this 
characteristic measures how much the mission path forms sectors focused on 
the center of the operating area.  It has a value of “true” if the ratio of 
sectors (i.e., three or four leg sequences that start and end near the 
operating area center) to the number of mission legs exceeds 0.15. 
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4. Comparing the Performance of the Case-Based Reasoning and Naïve 
Bayes Script Classifiers 

Testing of both the case-based reasoning and naïve Bayes script-classification 

systems was conducted using 104 test missions with known classifications.  In addition to 

the ideal classification, some test missions were assigned a classification that was 

considered acceptable but not ideal.  For instance, it might be acceptable to mistake an 

area-search script for a patrol script.  The test mission set included the missions upon 

which the system is based, however no mission was used in its own classification, so this 

was not allowed to bias the results.  That is, individual test cases were excluded from the 

case-based reasoning recall set and naïve Bayes probabilities were recomputed prior to 

each classification without the test case.  Performance for individual goal-types is 

provided in Figure 6.20 in the form of precision (the percentage of missions identified as 

a particular type that actually are that type) and recall (the percentage of missions of a 

given type that were correctly identified) for both systems.   Separate data points are 

provided for ideal and acceptable classifications. 
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Figure 6.20.   A Comparison of Individual Goal-Type Performance of the Case-Based 

Reasoning and Naïve Bayes Task-Level Behavior Script Classifiers 

 
Overall, case-based reasoning system performance was encouraging, with 71 of 

104 test scripts receiving their ideal classification.  An additional 20 scripts were 
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acceptably, if not ideally, classified.  Both precision and recall for most goal types 

exceeded 0.75 when using acceptability as the criteria.  However, the drop-off in 

precision for point-search scripts was significant, with only 65 percent of the scripts 

classified as point-searches actually falling into this category.  Potential causes for this 

anomaly include the absence of characteristics that are truly indicative of point searches 

and less-than-ideal weighting of characteristics. 

When compared to the case-based reasoning classifier, the naïve Bayes system 

performed surprisingly well despite the admittedly small training set.  In fact, in virtually 

every category both precision and recall using naïve Bayes analysis exceeded that of the 

case-based reasoning classifier.  In total, 80 of 104 test scripts were assigned their ideal 

classification, and an additional 20 were classified acceptably for an overall precision of 

0.96.  As depicted in Figure 6.20, both precision and recall of the naïve Bayes classifier 

exceeded 0.75 for all categories and exceeded 0.85 in every case except point-focused-

search script precision. 

Both the case-based reasoning and naïve Bayes implementations provide 

promising enough results to merit further investigation.  It is likely that overall 

performance of these particular systems can be improved by identifying the truly relevant 

characteristics and appropriate weights through a more rigorous characteristic versus goal 

type analysis, and increasing the size of the training set to more accurately represent the 

problem space.  Additionally, the investigation of case-based reasoning selection methods 

along the lines of k-nearest neighbor, more robust probabilistic learning methods (i.e., 

ones that do not rely upon the assumed independence of the components), and other data-

mining and machine-learning methods might also prove worthwhile.  Finally, figure 6.20 

clearly indicates that the performance of both systems varies with the type of mission 

being classified.  This implies that analysis of individual goal-type classification using a 

mechanism such as receiver operating characteristics curves (Montgomery and Runger, 

03) might prove useful in fine tuning both systems to improve performance.  

D. SUMMARY 

This chapter has described potential off-vehicle uses for the declarative mission 

portion of the proposed common autonomous vehicle data model.  Of these, the most 

obviously applicable is the conversion of declarative agendas into task-level behavior 



 

193 

scripts that can be loaded into vehicles for execution.  These conversions rely on Boolean 

propositions based on the characteristics of the goals and the operating area, decision 

trees, predefined waypoint-pattern templates, and in some cases artificial intelligence 

planners to generate task-level behavior scripts.  Limitations arising from the static nature 

of scripts notwithstanding, this methodology can be used to convert most agendas into 

task-level behavior scripts that will closely resemble manually developed scripts. 

The second off-vehicle application of declarative agendas is the reverse 

conversion—that is, converting a task-level behavior script into an agenda.  This sort of 

translation is potentially important if autonomous vehicle systems are to interact with 

external command and control systems.  Machine learning techniques have obvious 

applications in this area since they are commonly used for pattern recognition and 

classification.  Two such systems were implemented as a means of demonstrating this 

capability.  Of these a naïve Bayes system provided the best overall performance from a 

classification accuracy standpoint, but both systems performed well enough to justify 

further investigation. 

Ultimately, the off-vehicle usefulness of declarative agendas is limited.  The next 

chapter, however, will describe the development of an autonomous vehicle control 

architecture that more fully implements the semantics of declarative AVCL missions and 

provides for an increased level of autonomy to vehicles currently relying on more 

primitive control architectures.  
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VII. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM) 
DEVELOPMENT AND IMPLEMENTATION 

A. INTRODUCTION 

In and of itself, the use of declarative missions as described in Chapter VI does 

not provide a terribly strong case for the usefulness of AVCL’s declarative goal-based 

mission definition functionality.  There is simply no way to expose, much less take 

advantage of, all aspects of a declarative agenda short of an on-vehicle implementation 

that monitors and adapts mission flow to a developing situation.  However, the 

techniques of Chapter VI for pre-mission conversion of declarative agendas to task-level 

behavior scripts can be used as the basis for a multi-layer autonomous vehicle control 

architecture. 

There are two advantages to developing an autonomous vehicle control 

architecture around the capabilities of a data model along the lines of AVCL.  First, it 

allows for more abstract mission definition than the majority of existing architectures.  

That is, mission definition is independent from the behaviors that will ultimately drive the 

vehicle.  Further, the translation mechanisms described in Chapter V make it possible to 

install the control architecture on virtually any vehicle with minimal modification to the 

existing control system.  In effect, the nature of the data model itself facilitates the 

development of a multi-layer control architecture that can be used with virtually any 

vehicle. 

The exemplar control architecture that was implemented for this dissertation is an 

expanded version of the previously discussed RBM.  The basic relationship of this 

Extended RBM (ERBM) architecture to the AVCL data model and an existing vehicle 

controller is depicted in Figure 7.1.   At the top level, the ERBM Strategic level controls 

the execution of a declarative agenda by issuing task-level behavior scripts to the Tactical 

level.  The Tactical level is responsible for controlling execution of the most recent script 

and does so by issuing individual behaviors to the Execution level.  Since the Execution 

level is effectively comprised of the vehicle’s existing control architecture, it is necessary 

to translate behaviors to the target vehicle’s native command syntax as they are issued.  

The only vehicle-specific requirements are provisions for the existing architecture to 
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receive and execute commands from the ERBM controller, and similarly to provide the 

Strategic and Tactical levels access to adequate vehicle state information (e.g., telemetry, 

sensor and system data) to maintain the appropriate level of situational awareness. 

 
Figure 7.1.   The Extended Rational Behavior Model (ERBM) Data and Command Flow 

for a Typical On-Vehicle Implementation 

 
The remainder of this chapter provides a description of the ERBM, particularly 

where it differs from the originally proposed RBM, and a discussion of the 

implementation details on the NPS ARIES UUV. 

B. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM) 

1. Overview 
As stated in the RBM overview of Chapter II, the RBM is modeled on the 

command structure of a naval vessel.  The ERBM maintains this conceptualization, but 
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modifies a number of aspects.  Since the Execution level consists of the vehicle’s own 

control system, it is not addressed by the ERBM.  However, functionality along the lines 

of the RBM Execution level is assumed and the conceptual relationship between the 

ERBM Execution level and the rest of the architecture remains the same.  Specifically, it 

is assumed that the Execution level is responsible for the software to hardware interface 

and maintains vehicle stability as it executes the behaviors specified by the Tactical level. 

In order to facilitate simplicity and determinism, the characteristics, interfaces and 

even the programming paradigms of the RBM Strategic and Tactical levels are rigorously 

defined (Byrnes, 93).  Table 7.1 lists relevant Strategic and Tactical level restrictions.  

Many of these characteristics, however, are unrealistic given the level of abstraction of 

AVCL goals.  The ERBM, therefore, modifies or relaxes several characteristics. 

RBM Strategic Level 
Symbolic computation only.  Contains the mission specification and doctrine. 
No storage of internal vehicle or world state variables. 
Rule-based implementation made up of a rule set and inference engine. 
Non-interruptible.  Not event driven. 
Directs the tactical level through asynchronous message passing. 
Messages may be either commands or queries requiring Boolean responses. 
Operates in the discrete domain independent of time. 
Building block:  goals. 

RBM Tactical Level 
Provides asynchronous interface between Strategic and Execution levels. 
Behaviors reside here and may execute concurrently. 
Behaviors are implemented as methods of objects. 
External interface consists of two parts:  behavior activations from the strategic level and 
command / telemetry paths to / from the Execution level. 
World and mission models maintained here. 
Responds to Strategic level queries with a logical TRUE / FALSE. 
Not interruptible except for data transfers.  Hard deadlines cannot be guaranteed. 
Operates in the discrete event / continuous time domains. 
Building block:  programming objects with behaviors. 

Table 7.1.   Characteristics of the Strategic and Tactical Levels of the RBM as Defined in 
(After:  Byrnes, 93) 

 
Rather than focusing on implementation details of the individual levels, the 

ERBM concentrates on the level of decision-making required at various levels and the 

interfaces between levels.  Implementation details are not constrained so long as the 

communication model is adhered to.  Determinism is not built into the model itself, but is 
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dependent on the implementation.  It is permissible for different implementations to use 

different behavior sequences to accomplish the same goal.  It is important, therefore, to 

differentiate between the requirements of the ERBM and the details of a particular 

implementation. 

2. The Strategic Level 
The Strategic level of the RBM consists of a set of rules and the inference engine 

that resolves them.  When implemented using a symbolic programming language along 

the lines of Prolog or the C-Language Integrated Production System, the mission 

specification and operating system make up the entire Strategic level implementation 

(Byrnes, 93).  This is not possible with AVCL goals since they are not directly 

executable.  The ERBM Strategic level, therefore, must be implemented to load, interpret 

and execute arbitrary AVCL agendas (i.e., the mission specification is an input to, not a 

part of, the Strategic level).  The role of the ERBM Strategic level is to generate task-

level behavior scripts that will accomplish the goals defined in the AVCL agenda.  It 

accomplishes this through the application of techniques along the lines of those described 

in Chapter VI in response to the real-world events.  The characteristics of the ERBM 

Strategic level most closely related to those of the RBM are listed in Table 7.2. 

ERBM Strategic Level 
Contains the mission specification. 
Symbolic and numerical computation as required. 
Implementation must support real-time goal decomposition into task-level behavior scripts. 
Maintains a world model sufficient for determination of goal success and failure. 
Interruptible, partially event driven. 
Directs the tactical level through asynchronous message passing. 
Messages may be either task-level behavior scripts or queries. 
Operates in the discrete domain with limited dependence on time. 
Task building block:  AVCL goals. 

Table 7.2.   Characteristics of the ERBM Strategic Level 

 
Not surprisingly, there are a number of significant differences between the ERBM 

Strategic level and the Strategic level of the original RBM.  First, the ERBM Strategic 

level definition does not prohibit numerical computation and allows the use of vehicle or 

world state information.  Nevertheless, numerical computation is not elevated as a core 

Strategic level responsibility.  Rather, such non-symbolic operations are permitted in 
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order to facilitate the implementation of a world model and planning algorithms in 

support of task-level behavior script generation.  Examples might include either periodic 

sampling of vehicle telemetry to facilitate monitoring of goal execution status, or 

definition of the operating area in Cartesian space for the purpose of search pattern 

development.  In short, neither the type of computation conducted nor the type of 

information maintained at the Strategic level is constrained by the ERBM, but the 

computation and information must still directly support the generation of task-level 

behavior scripts that accomplish the goals defined by the agenda. 

Communication with the Tactical level takes two forms.  When the Strategic level 

develops a course of action in the form of a task-level behavior script, it is immediately 

sent to the Tactical level.  It is expected that the Tactical level begins execution of a script 

immediately upon receipt even if it requires the interruption of a currently executing 

script.  In this way, the Strategic level can replan as required when new information is 

received.  The second method of communication with the Tactical level is through 

queries.  Whereas the RBM only allowed queries requiring a Boolean response, the 

ERBM implements a set of query messages that can be used to request various types of 

status information.  The Tactical level is expected to provide the requested information 

using the appropriate response.  Available ERBM inter-level messages are described in 

Table 7.3. 

A final difference between the RBM and ERBM Strategic levels is that the 

ERBM Strategic level is interruptible and partially dependent on timing.  This serves two 

purposes.  The first purpose is to support AVCL goal-timing requirements.  Since 

determination of goal success is a Strategic-level responsibility, it is at this level that a 

failure must be triggered if a goal fails to succeed in the allotted time or the vehicle does 

not arrive in the operating area by the designated start time.  The second purpose is to 

support a shift from the RBM communications model, in which lower levels provide 

information only upon request by the next higher level, to a model where the lower level 

provides information whenever it becomes available.  Under this model, the Tactical 

level can interrupt the Strategic level and potentially initiate replanning at any time by 

providing information concerning the status of the currently executing script. 
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Message From To Description Parameters 
Strategic Tactical QueryPosition 
Tactical Execution

Request for the most 
recent vehicle position. none 

QueryScriptComplete Strategic Tactical 
Request for the status 
of the current task-level 
behavior script. 

none 

QueryCommandComplete Tactical Execution
Request for the status 
of the currently active 
task-level behaviors. 

none 

Tactical Strategic Position 
Execution Tactical 

Report of the vehicle 
position (Cartesian). 

X (double),       
Y (double) 

ScriptComplete Tactical Strategic 
Status report for the 
current task-level 
behavior script. 

status (boolean) 

ScriptFail Tactical Strategic 
Report that the current 
script cannot be 
completed. 

none 

CommandComplete Execution Tactical 
Status report for the 
currently active task-
level behaviors. 

status (boolean) 

CommandFail Execution Tactical 
Report that the active 
behaviors cannot be 
completed. 

none 

TargetFound Tactical Strategic 
Report that a search 
objective has been 
located. 

target type 
(string) 

TargetDestroyed Tactical Strategic 
Report that an Attack or 
Demolish objective has 
been destroyed. 

target type 
(string) 

ContaminantDetected Tactical Strategic 
Report that a 
contaminant has been 
detected 

contaminant 
type (string) 

ContaminantRemoved Tactical Strategic 
Report that a detected 
contaminant has been 
cleaned. 

contaminant 
type (string) 

SignalDetected Tactical Strategic 
Report that a signal of 
interest has been 
detected 

frequency 
(double) 

StrategicEnding Strategic Tactical 
Report that the 
Strategic-Level thread 
is terminating 

none 

TacticalEnding Tactical Execution
Report that the 
Tactical-Level thread is 
terminating. 

none 

Table 7.3.   Available ERBM Inter-Level Messages 
 

This push-pull communications model significantly reduces inter-level 

communications requirements.  Implementation of the ERBM Strategic level using the 

RBM’s pull-only communications model calls for repeated polling of the Tactical level to 
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obtain updated position and goal-specific information.  This requires two messages per 

polled data item for each iteration of the Strategic level’s think-decide-act loop.  

Implementation using a push-pull or push-only model potentially reduces message 

requirements by at least 50 percent by eliminating queries.  Additionally, the push-pull 

communications model more accurately mimics the command relationships and 

interactions of a manned vessel than the pull-only model.  This approach may even 

facilitate placing the ERBM controller off-line from the vehicle further increasing 

installation flexibility and minimizing on-vehicle installation requirements. 

3. The Tactical Level 
The functionality of the ERBM Tactical level differs only slightly from that of the 

originally proposed RBM and many of the characteristics listed in Table 7.1 are largely 

unchanged.  The characteristics of the ERBM Tactical level (Table 7.4) have evolved 

from those of the RBM to support the use of AVCL task-level behaviors and the push-

pull communications model described above.  The responsibilities of the Tactical level 

are twofold.  The first is to direct the activities of the Execution level using the current 

task-level behavior script.  The second is to develop and provide the information required 

by the Strategic level to monitor the status of the current goal, replan when required, and 

determine goal success or failure. 

ERBM Tactical Level 
Provides asynchronous interface between Strategic and Execution levels. 
Initiates activation and termination of task-level behaviors in accordance with the AVCL behavior 
activation and termination criteria. 
External interface consists of two parts:  behavior-script activations from the Strategic level and 
command/telemetry data paths to/from the Execution level. 
Maintains a world model sufficient to determine the execution status of the current task-level 
behavior script. 
Responds to Strategic level queries with a set of predefined messages.  May provide status 
information using these messages without a Strategic level request. 
Directs the Execution level by asynchronous message passing. 
Messages may be either individual task-level behaviors or queries. 
Interruptible by the Execution level only by command failure notification and data transfers.  Can 
be interrupted by the Strategic level at any time to modify tasking. 
Operates in the discrete event / continuous time domains. 
Task building block:  AVCL task-level behaviors. 

Table 7.4.   Characteristics of the ERBM Tactical Level 
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The Tactical level directs the Execution level through the issue of individual task-

level behaviors.  The behavior activation and termination criteria described in Chapter IV 

must be observed.  In many cases the Tactical level simply forwards the behaviors 

contained in the current script, although it is permissible for the Tactical level to make 

modifications as long as the they do not conflict with Strategic level directives.  As an 

example, that Tactical level might insert intermediate waypoints to avoid obstacles while 

transiting between the global waypoints specified by the Strategic level. 

The second responsibility of the ERBM Tactical level is to develop and maintain 

a world model that supports inter-level reporting requirements.  Model contents might 

include detected targets (type, location, classification and status), signals of interest 

detected, and the vehicle system status effecting the ability to execute task-level behavior 

scripts.  Thus, as with the original RBM, the Tactical level is the appropriate location in 

the architecture for the inclusion of software modules pertaining to simultaneous 

localization and mapping, object and feature detection and classification, and mission 

system or payload management. 

The communication interface between the Tactical and Execution levels is 

semantically similar to the interface between the Strategic and Tactical levels in that it 

uses a push-pull model.  The Tactical level can issue new task-level behaviors to the 

Execution level at any time.  It is assumed that one or more of the translation mechanisms 

described in Chapter V will be required to convert the AVCL task-level behaviors to the 

appropriate vehicle-specific format.  Additionally, it is permissible (but not required) for 

the Tactical level to use the query messages listed in Table 7.3 to request information 

from the Execution level.  The Execution level is expected to respond to Tactical level 

queries with the appropriate message.  It is also permissible for the Execution level to 

provide information without its being requested. 

It is worth noting that the only required modifications to the existing vehicle 

controller are the implementation of data-passing interfaces with the Tactical level and 

dynamic behavior script activation.  These can be developed in a manner appropriate to 

the vehicle on which the ERBM controller is to be utilized.  Networked message passing, 

piped inter-process communication and shared memory are all viable options depending 
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on the implementation circumstances.  For the time being, it is assumed that the Tactical 

level has at least limited access to the vehicle’s raw sensor data since messages have not 

yet been implemented to request or transfer this information.  For this and other reasons, 

a great deal of future work can be applied to the ERBM Tactical level. 

In summary, whereas the Strategic level decomposes goals into task-level 

behavior scripts for issue to the Tactical level, the Tactical level decomposes task-level 

behavior scripts into individual behaviors for issue to the Execution level at the 

appropriate time.  Additionally, the Tactical level is responsible for interpreting the raw 

data available at the Execution level in order to identify and report significant events 

along the lines of target detections and system malfunctions.  A push-pull 

communications model is utilized throughout to best exchange information between 

levels. 

4. Exemplar ERBM Implementation 

a. Strategic Level Implementation 

Development of an exemplar ERBM implementation in the course of this 

work focused primarily on the Strategic level.  Among the most important choices to be 

made during implementation of the ERBM Strategic level is the nature of the decision 

mechanism since it determines when planning and replanning are required, how that 

planning is conducted, and when a goal has succeeded or failed.  In the development of 

multi-layer vehicle control in support of NPS ARIES rendezvous with another UUV, a 

finite state machine was chosen because it provides a clear framework for the design of 

the logic of the rendezvous process and also provides a mechanism for high-level control 

over the process (Nicholson, 04).  Building on the success of this implementation, the 

ERBM implementation described here also relies on finite-state-machine-based control at 

the Strategic level.  Thus, the Strategic level can accurately be described as nested finite 

state machines.  As with the original RBM, a mission-level state machine determines 

which goals are executed in what order.  A goal-specific finite state machine controls 

planning and replanning for each goal in the mission.  

At the heart of the Strategic level is a mission-flow controller that contains 

the agenda’s mission-level finite state machine as defined by the goal list portion of the 

AVCL document, as well as the set of avoid areas listed in the constraints portion of the 
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agenda (including any avoid areas that might be added dynamically as the mission 

proceeds).  The mission-flow controller maintains a reference to the currently executing 

goal and executes mission-level finite state machine transitions upon goal success or 

failure.  Additionally, the flow controller instantiates a goal-specific planner along the 

lines of the rendezvous planner of (Nicholson, 04) for each goal and relays information 

from the Tactical level to the planner associated with the currently executing goal 

planner. 

Goal-specific planners are responsible for all task-level behavior script 

generation required for the accomplishment of a given goal.  Each planner consists of a 

goal-type-specific finite state machine, state variables suitable for control of state 

machine transitions, and methods capable of generating task-level behavior scripts 

appropriate for each state in the finite state machine.  As the mission progresses, state 

transitions result in replanning based on the new state and immediate relay of the 

generated task-level behavior script to the Tactical level.  Upon reaching the finite state 

machine’s terminal state (which can indicate goal success or failure), the flow controller 

is notified so that the mission-level state machine transition can be executed and planning 

begun for the next goal in the agenda.  The goal-level finite state machines are depicted 

in Figures 7.2 through 7.9.  Not depicted are the state machines corresponding to the 

Rendezvous goal type since it is documented in detail in (Nicholson, 04) or the 

Reposition goal type which consists of only Transit and Complete states.  For the sake of 

simplicity, status reporting is not depicted in these figures, but the transmission of any 

reports that may be specified by an AVCL goal is implicitly included in the transitions. 

 
Figure 7.2.   A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL Environmental Sampling Goals 
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The simplest goal-specific finite state machines (not including the 

Reposition goal) are associated with the SampleEnvironment, IlluminateArea, Jam, 

MonitorTransmissions and Patrol goals (Figures 7.2 through 7.5).  As with all goal-

specific state machines, the start state controls the transit to the operating area.  Upon 

arrival the finite state machine transitions to either an execute or alert state (i.e., be 

prepared to execute, but do not do so until ordered).  The set of task-level behavior 

sequence for the execute state of a Jam, IlluminateArea or MonitorTransmissions goal 

directs the vehicle to the center of the operating area and then activates the jammer, 

illuminator or receiver.  The assumptions associated with the inability of the present task-

level behavior set to control mission-specific systems are still germane. 

 
Figure 7.3.   A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL IlluminateArea and Jam Goals  

 

 
Figure 7.4.   A Goal-Type-Specific Finite State Machine for ERBM Strategic Level Use in 

the Accomplishment of AVCL MonitorTransmissions Goals 
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The behavior sequence for the execute phase of a Patrol or 

SampleEnvironment goal consists of a search pattern generated as described in Chapter 

VI.  A transition from the execute state or alert state to the complete state (which can 

indicate either goal success or failure) is executed at the goal’s designated end time.  

Additionally, the SampleEnvironment state machine transitions to the complete state if 

the pattern is concluded prior to the designated end time.  The Patrol goal state machine, 

on the other hand, initiates a new search pattern if it finishes the pattern prior to the 

designated end time.  The SampleEnvironment, MonitorTransmissions, and Patrol state 

machines transition from the execute state back to the same state upon detections to 

facilitate reporting. 

 
Figure 7.5.   A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL Patrol Goals 

 

 
Figure 7.6.   A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL Search Goals 
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Only slightly more complicated is the finite state machine associated with 

AVCL Search goals (Figure 7.6).  This finite state machine is similar to the one 

associated with Patrol goals, however it does differ somewhat in the transitions.  Since a 

Search goal can direct the vehicle to search for single or multiple targets, there are two 

possible transitions from the execute state following a detection.  If there is only a single 

search objective, a transition to the complete state is appropriate.  If there are potentially 

multiple targets, the post-detection transition is back to the execute state so that the 

search can continue.  Upon pattern completion, the finite state machine transitions to the 

complete state regardless of the timing since the search pattern was specifically planned 

to achieve the probability of detection ordered by the goal. 

 
Figure 7.7.   Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL MarkTarget Goals 

 

The goal-specific finite state machines associated with the remaining goal 

types (MarkTarget, Decontaminate, Attack and Demolish) each build upon one of the 

preceding state machines.  The MarkTarget finite state machine (Figure 7.7) is similar to 

the Patrol state machine except that upon target detection, the transition is to a mark 

target state (where it remains until the goal’s specified end time) rather than back to the 

execute state. 

Similarly, the Decontaminate finite state machine (Figure 7.8) extends the 

state machine associated with SampleEnvironment goals.  In this finite state machine, 
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when a contaminant is detected, a transition is made to a decontaminate state.  When the 

contaminant has been successfully removed, the state machine transitions back to the 

execute state and the sampling (search) pattern continues. 

 
Figure 7.8.   Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL Decontaminate Goals 

 

 
Figure 7.9.   Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in 

the Accomplishment of AVCL Attack and Demolish Goals 
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Finally, the finite state machine used to control the execution of Attack 

and Demolish goals (Figure 7.9) is an extension of the one associated with Patrol goals.  

The added state here is an engage state that controls the actual attack or demolition of the 

encountered target.  The transition from this state is executed when the target has been 

successfully engaged with the controller returning to the execute state if the goal calls for 

the attack of multiple targets or transitioning to the complete state the goal calls for the 

attack of only one.  Regardless of the current state, the controller transitions to the 

complete state if the goal times out. 

It must be noted that while the finite state machines associated with the  

goals imply full functionality, scripts cannot presently be generated to fulfill the 

requirements of the added state (mark target, decontaminate, or engage).  As with pre-

mission use of these goal types, full implementation in the ERBM can likely be 

facilitated by the development of a standardized mission system interface functionality 

that is incorporated into the task-level behavior set. 

b. Tactical Level Implementation 

At the Tactical level, the current exemplar implementation issues 

individual task-level behaviors from the current script to the Execution level at the 

appropriate times.  Thus, it complies with the ERBM Tactical level requirements 

discussed in the previous section, but at the same time it has significant room for growth.  

Interpretation of sensor data, onboard systems monitoring and control, local path 

planning and obstacle avoidance, and object classification in particular are areas in which 

Tactical-level functionality can improve.  However, given the numerous ongoing research 

efforts in these and other areas that might be applied at the Tactical level, the decision 

was made to focus ERBM development on other aspects of the architecture for the time 

being.  Ultimately, improvement of the Tactical level functionality through the addition 

of capabilities such as obstacle avoidance, contact detection and classification, and 

simultaneous localization and mapping provides a number of potential areas for future 

work relating to the proposed ERBM. 
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C. RBM STRATEGIC AND TACTICAL LEVEL IMPLEMENTATION ON 
THE ARIES UUV 

1. The Existing ARIES Control Architecture 
The internal configuration of the NPS ARIES vehicle upon which the ERBM 

controller exemplar is installed is depicted in Figure 7.10.  Onboard computers include a 

PC/104 stack containing two Pentium III processor boards, two 40 gigabyte hard drives 

and various input / output cards.  The two processors operate as independent computers, 

designated QNXE and QNXT, each running the QNX Neutrino real-time operating 

system (QNX, 05).  Although independent, the QNXE and QNXT computers maintain a 

shared memory block that allows processes on either computer to share information 

without the overhead of network or inter-process communication.  The QNXE computer 

controls mission execution and directly interacts with the vehicle control actuators.  The 

execution process (RExec) runs on this computer and controls the vehicle as directed by 

the track.out waypoint file.  The QNXT computer, on the other hand, is primarily 

responsible for navigation and sensor processing and provides filtered navigation and 

sensor data to the QNXE RExec process and other onboard systems. 

A second PC/104 stack containing a single Pentium III processor board and an 80 

gigabyte hard drive is available for non-real-time processing.  This computer, designated 

PC104, runs the Windows XP operating system and is used for non-time-critical 

processing.  In the existing vehicle configuration, the PC104 computer is used primarily 

for sonar and video image processing and interpretation.  It communicates with the 

QNXE and QNXT computers via an onboard 10Base2 Ethernet connection.  It is on this 

computer that the ERBM controller is installed. 

The normal means of communication between off-board systems and onboard 

computers is via wireless network connection.  Limited communication with ARIES 

while the vehicle is submerged is provided by a Benthos acoustic modem.  This 

connection is used to monitor vehicle location during a mission and direct vehicle activity 

over the course of a mission as described in (Marr, 03).  Additionally, the acoustic 

modem is used for inter-vehicle communication with other submerged vehicles and 

network nodes. 
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Figure 7.10.   The NPS ARIES UUV Configuration (After:  Marco, 01) 

 

2. Incorporation of ERBM onto the Existing ARIES Control 
Architecture 

The ERBM controller is implemented in the Java programming language and 

installed on the ARIES PC104 computer.  A single multi-threaded process implements 

the ERBM Tactical and Strategic levels as well as all required translators and network 

connections.  Future improvements to the Tactical level (i.e., simultaneous localization 

and mapping, target and obstacle detection and classification, etc.) might be implemented 
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as threads in the existing Java program or as separate processes (written using any 

programming language) that communicate with the ERBM controller’s virtual machine 

via a network connection. 

At run time, the ERBM controller is started prior to the QNXE RExec process.  

The controller loads the AVCL declarative mission, initializes the mission-flow 

controller, and establishes a server socket for the QNXE processes to connect to as 

required.  The ERBM controller accepts multiple connections and each connection is 

configured as read-only (to the PC104), write-only (from the PC104), or read-write.  

Beyond this distinction, all connections are treated identically.  All read-only and read-

write connections can send any valid message to the ERBM controller at any time.  

Similarly, any message or translated task-level behavior to be sent from the ERBM 

controller will be transmitted over all active read-write and write-only connections.  

Strategic-level goal and mission timing commences when the first connection (regardless 

of type) is established.  The current ARIES ERBM implementation uses read-only and 

write-only connections exclusively. 

All modifications and additions to existing ARIES control software are 

implemented on the QNXE computer.  The software architecture of the ERBM-controlled 

execution level is depicted in Figure 7.11.  The most significant modification to the 

existing architecture is the implementation of an ERBMConnection process that waits for 

new waypoint lists (track.out files) to be issued by the Tactical level of the ERBM 

controller.  Upon receiving a new waypoint list, the ERBMConnection process archives 

the current track.out file, saves the new one to the hard drive, and sets a shared-memory 

script-status flag to indicate to the RExec process that a new script is ready to be loaded 

and executed.  When the ERBMConnection process receives a “TacticalEnding” message 

instead of a track.out file (indicating that from the standpoint of the ERBM controller the 

mission is complete), it sets the shared-memory flag to indicate that the mission is 

complete and that the RExec process is to initiate any mission-termination procedures 

upon achieving the last waypoint in the currently executing script.  The 

ERBMConnection process utilizes a single write-only (from the perspective of the 

PC104) ERBM connection. 
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Only minimal modification of the existing RExec process is required to 

implement ERBM control.  Two initialization steps, launching the ERBMConnection 

process and establishing a read-only connection (from the perspective of the PC104) with 

the ERBM controller, and two mission-completion steps, terminating the 

ERBMConnection process and closing the ERBM-controller connection are implemented 

in the RExec process. 

The most significant changes to the RExec process deal with waypoint list 

execution.  At the start of each iteration of the RExec control loop, the shared-memory 

script-status flag is checked.  If the flag indicates that a new track.out file is present, the 

new file is loaded for execution and the shared-memory flag is reset.  If the flag indicates 

that no new track.out file has been received, execution of the current file continues 

uninterrupted.  If the flag indicates that the ERBM controller has terminated, execution of 

the current waypoint sequence continues uninterrupted and mission-termination 

procedures are initiated when the last waypoint is reached.  In this case, the shared-

memory flag is not rechecked in future closed-loop iterations.  Thus, the ERBM 

controller is able to interrupt and replace the currently executing waypoint list at any 

time.  Ultimately, the ERBM controller determines that a particular waypoint sequence is 

to be the mission’s last whether it is successfully completed or not. 

 
Figure 7.11.   The ERBM Controller Implementation on the ARIES UUV 
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In most cases, the currently executing waypoint list runs to completion without 

interruption.  In these cases, the RExec process must send a “ScriptComplete: true” 

message to the ERBM controller (unless a “TacticalEnding” message has been received) 

and continue towards the current waypoint until the controller issues the next waypoint 

sequence.  This requires modification of the existing RExec mission termination criteria 

since the baseline RExec implementation commences mission completion procedures 

immediately after reaching the final waypoint of the list.  To support ERBM 

implementation, a three-second delay is instituted to allow time for the ERBM controller 

to issue the next track.out file.  If the ERBM controller does not provide a new script 

within this time limit, mission termination procedures are initiated without regard to the 

status of the AVCL mission. 

A number of safeguards are implemented to ensure safe vehicle operation.  The 

first is the retention of all existing RExec mission-abort logic.  Criteria such as waypoint 

time-out, leak detection, and hardware malfunctions initiate mission abort procedures 

regardless of ERBM status, as will an abort order received via the Benthos acoustic 

modem.  In addition, a three-second time-out is implemented both at mission start and 

following waypoint-list completion to ensure the vehicle does not operate for an extended 

period of time without a valid control script.  Finally, signal handlers are implemented to 

prevent network problems (i.e., socket errors) from causing the RExec process to 

terminate unnaturally and leave vehicle actuators, most importantly propellers, active but 

uncontrolled.  Receipt of a socket-related error signal (i.e., SIGPIPE or EPIPE), most 

likely resulting from unannounced or accidental closure of the socket, terminates 

networked message transfer between QNXE processes and the ERBM controller.  In 

these cases, the mission is allowed to continue and terminate normally when the final 

waypoint in the most recently activated track.out file is achieved. 

Testing of this ERBM implementation in both real-world and virtual 

environments is documented in the next chapter as is the connection of the ARIES 

control software to a six-degree-of-freedom physically-based model in support of 

simulation testing.  It is important to note that this ERBM implementation does not 

preclude the execution of ARIES missions without ERBM control.  In fact, ARIES 
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waypoint lists can be loaded and run directly (i.e., without ERBM controller use) in 

exactly the manner as they were prior to ERBM implementation.  

D. SUMMARY 

The ERBM is a multi-layer hybrid control architecture based on the relationship 

between AVCL’s declarative and scripted mission-definition capabilities.  An 

enhancement of the original RBM architecture, the ERBM improves the capabilities and 

robustness of the Strategic and Tactical levels while maintaining RBM’s correlation to 

the command hierarchy of a manned vessel. 

At the Strategic level, the ERBM applies the techniques described in Chapter VI 

to convert declarative goals into task-level behavior scripts that are to be executed by the 

Tactical level.  Since these techniques are applied at run time and can generate new 

scripts at any time in response to real world exigencies, the ERBM is better able to fully 

utilize all AVCL declarative agenda aspects.  The Tactical level controls the execution of 

task-level behavior scripts generated by the Strategic level by issuing individual 

behaviors to the Execution level. 

The most important improvement over existing autonomous vehicle control 

paradigms that is provided by the design of a control architecture around the functionality 

of a data model along the lines of AVCL is its vehicle-independence and the ease with 

which it can be used to augment an existing vehicle controller.  Specifically, the ability to 

convert AVCL task-level behavior sequences into vehicle-specific tasking allows the 

ERBM architecture to be installed on top of arbitrary vehicles with minimal modification 

to the existing vehicle control software (and no modification of the vehicle-specific 

command set).  This A significant increase in the ability to operate in uncertain 

environments is provided by the realtime planning capability of the ERBM architecture 

described here. 

The ability to implement the ERBM on top of an existing vehicle control 

architecture is demonstrated by installation on the NPS ARIES UUV.  Fairly simple 

modifications to the existing ARIES control software enables the vehicle to dynamically 

load and execute waypoint sequences received through a network connection as the 

mission progresses.  The ERBM controller uses the AVCL-to-ARIES XSLT stylesheet to 



 

216 

convert task-level behaviors generated by the Tactical level into ARIES waypoint lists.  

Results of the ARIES ERBM implementation are discussed in Chapter VIII. 

It is also reasonable to infer from the experimental results documented in the next 

chapter that, the planning algorithms and finite-state-machine-based control used by the 

ERBM implementation described here provide significantly more robust autonomy than 

many architectures currently in use.  This is not to say, however, that the ERBM 

architecture is inherently superior to other available autonomous vehicle controllers.  

Other architectures such as Draper Laboratory’s ADEPT and the Pennsylvania State 

University Advanced Research Laboratory’s Intelligent Controller also provide for 

significant autonomy.  In fact, many of the planning algorithms developed in the course 

of this work might be applicable in systems along the lines of ADEPT and the Intelligent 

Controller and those implemented within these architectures might prove useful in an 

ERBM implementation as well. 

The primary strength of the ERBM controller is the level of vehicle independence 

that it achieves and the data-model-based mechanisms by which it achieves this 

independence.  These same mechanisms might ultimately prove useful not only in the 

evolution of the ERBM architecture, but in the development of other vehicle-independent 

architectures and the extension of existing architectures as well. 
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VIII. EXPERIMENTATION 

A. INTRODUCTION 
This chapter provides a discussion of experiments conducted in support of this 

work.  Experiments are designed to test the procedures and assertions introduced in 

previous chapters.  The preponderance of both simulated and in-vehicle experimentation 

involves the development and implementation of the ERBM.  Thus, ERBM testing 

comprises the bulk of this discussion.  Conversions between AVCL and vehicle-specific 

data formats are discussed in great detail in Chapter V and receive only brief attention 

here.  The successful implementation of the ERBM controller on the ARIES UUV, 

however, relies heavily on the stylesheet-based AVCL-to-ARIES conversion, so the 

ability to automatically convert AVCL to vehicle-specific formats is implicitly 

demonstrated.  Similarly, the techniques for generating task-level behavior scripts to 

accomplish declarative goals (Chapter VI) is demonstrated by the ARIES ERBM 

implementation and the simulation results for other vehicle types.  Finally, testing of the 

case-based reasoning and naïve Bayes systems for inferring declarative goals from task-

level behavior scripts is discussed in Chapter VI rather than here. 

This chapter begins with a description of mission simulation in the AUVW.  This 

is immediately followed by a description of the physically-based models used by the 

AUVW during simulations.  Section C provides a brief discussion of translations between 

AVCL and vehicle-specific formats.  Also provided in Section C is a discussion of 

experimental results of declarative agenda missions run using the ERBM controller.  

ERBM results are provided for simulated UUV, USV, and UAV missions as well as real-

world UUV (ARIES) missions. 

B. MISSION SIMULATION 

1. Overview 

Autonomous Vehicle missions are simulated in a virtual environment in support 

of this work using the AUVW.  Described in more detail in Appendix B, the AUVW is 

Java application for mission planning and rehearsal and includes utilities for conversion 

between AVCL and vehicle-specific tasking languages as described in Chapter V.  

Additionally, the AUVW incorporates physically-based UUV, USV, and UAV models 
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for use in simulation and three-dimensional mission visualization using interactive X3D 

scenes and the IEEE Distributed Interactive Simulation (DIS) protocol (IEEE, 95). 

There are two methods of running simulated missions using the AUVW.  The 

most common relies on vehicle-type-specific execution software incorporated directly 

into the AUVW.  Each AUVW vehicle-type-specific component implements the full set 

of applicable task-level behaviors.  Additionally, the ERBM controller is available to 

provide high-level control of mission execution during declarative agenda simulation.  

This mode of mission simulation is useful for testing mission flow and vehicle 

performance during the execution of missions defined with AVCL. 

The second method of simulating mission execution using the AUVW models 

involves their use as a simulation engine for in-vehicle control software.  When run in 

this mode, the appropriate vehicle-type-specific model is executed by itself and 

establishes a server socket for on-vehicle control software connection.  After establishing 

a connection with the AUVW model, the on-vehicle software runs normally except that it 

uses simulation values instead of onboard sensor-derived values.  At the point in the 

closed-loop control cycle responsible for reading or computing telemetry and sensor 

values, a string containing a white-space-delimited series of current telemetry values and 

control settings is transmitted to the AUVW model.  The model uses the telemetry and 

control information to calculate updated telemetry and sensor information that are 

transmitted back to the vehicle software using a similar telemetry string.  Common 

telemetry-string fields used by all AUVW models are listed in Table 8.1.  Additionally, 

each telemetry string contains 50 additional values that are used to transmit vehicle-type-

specific control and sensor settings and values.  The interpretation of each of these 

model-specific values is available in the AUVW documentation. 

All simulation results documented in this chapter for USV and UAV missions 

were obtained using embedded AUVW vehicle-execution components.  UUV simulation 

results, on the other hand, were obtained using NPS ARIES UUV on-vehicle software 

communicating with the AUVW model using a network.  All simulations were run 

against the appropriate vehicle-type-specific model.  The remainder of this section 

provides a description of each of the vehicle-type-specific models. 
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Telemetry 
String Field 

State 
Variable Description 

1 flag Either "uuv_state", "usv_state" or "uav_state". 
2 t Current vehicle-execution time (seconds since start). 

3 x X location (meters) of the vehicle in the earth-fixed coordinate 
frame. 

4 y Y location (meters) of the vehicle in the earth-fixed coordinate 
frame. 

5 z Z location (meters) of the vehicle in the earth-fixed coordinate 
frame. 

6 φ Bank Euler angle (degrees).  Rotation about the X axis. 
7 θ Pitch Euler angle (degrees).  Rotation about the Y axis. 
8 ψ Yaw Euler angle (degrees).  Rotation about the Z axis. 

9 u Linear velocity (meters per second) along the body-fixed 
coordinate frame X axis. 

10 v Linear velocity (meters per second) along the body-fixed 
coordinate frame Y axis. 

11 w Linear velocity (meters per second) along the body-fixed 
coordinate frame Z axis. 

12 p Angular velocity (degrees per second) about the body-fixed 
coordinate frame X axis. 

13 q Angular velocity (degrees per second) about the body-fixed 
coordinate frame Y axis. 

14 r Angular velocity (degrees per second) about the body-fixed 
coordinate frame Z axis. 

Table 8.1.   Autonomous and Unmanned Vehicle Workbench (AUVW) Physically-Based 
Model Telemetry String Fields Common to all Vehicle Types 

 

2. Physically-Based AUVW Models  
Vehicle-type-specific models in the AUVW rely on rigid-body dynamics, 

Newton-Euler equations, and numerical integration (McGhee, et al., 00).  UUV and UAV 

models are rigorously defined and allow for accurate six-degree-of-freedom modeling of 

vehicle response.  The USV model, on the other hand, provides only two-degree-of-

freedom response, making a more accurate USV model, as well as a UGV model, 

candidates for future AUVW improvements. 

A variation of the model described in (Brutzman, 94) is used for UUV modeling 

in the AUVW.  The equations of motion and coefficients of the model correlate directly 

to the characteristics of the vehicle body and control effectors.  The model’s relationship 

between propeller revolutions per minute and forward speed, however, is modified to 

more accurately reflect actual vehicle response.  Rather than the linear speed-per-
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revolutions-per-minute coefficient of the original model, three reference speeds 

(corresponding to 0, 50, and 100 percent of available revolutions per minute) are used to 

derive a quadratic curve that correlates any revolutions per minute value between 0 and 

100 percent to a specific forward speed through the water.  All other equations of motion 

of the UUV model are identical to those documented in (Brutzman, 94). 

The model’s coefficient values are adjusted as required to accurately model 

various vehicles.  Values used during the tests documented in this chapter model the 

response of the ARIES UUV and are identical to those of (Brutzman, 94) with two 

notable exceptions.  The ARIES propeller revolutions-per-minute-to-forward speed 

relationship is based on speeds of 0.0, 1.6, and 1.7 meters per second for 0, 50, and 100 

percent of available revolutions per minute respectively.  Additionally, since the ARIES 

UUV does not utilize cross-body thrusters, the values of all coefficients relating to their 

influence on vehicle response are set to zero. 

Providing for only a two-degree-of-freedom response (surge and yaw), the USV 

model is the most rudimentary of the vehicle-type-specific models currently implemented 

in the AUVW.  Although the model’s simplicity effectively precludes its use in testing 

vehicle response, it does provide a useful tool for evaluating overall mission flow and the 

progress of a declarative agenda’s goals, and is therefore suitable for the types of 

experiments required to validate the functionality of the ERBM controller. 

The model consists of Equations 8.1 and 8.2 where umax is the vehicle’s maximum 

forward speed, rmax is the vehicle’s maximum turn rate, rpm is the current propeller 

revolutions per minute setting (or average for multi-propeller vehicles), rpmmax is the 

maximum commandable propeller revolutions per minute, δrudder is the current rudder 

deflection (degrees), and δrudderMax is the maximum allowable rudder deflection.  These 

equations are used to compute linear acceleration along the vehicle’s body-fixed X axis 

and angular acceleration about the body-fixed Z axis respectively.  Results documented 

in this chapter use coefficients intended to represent a typical medium-speed USV.  

Maximum speed (umax) was 15.0 meters per second, maximum turn rate (rmax) was 0.3 

radians per second, maximum revolutions per minute (rpmmax) was 1000 and maximum 
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rudder deflection (δrudderMax) was 30 degrees.  As with other AUVW models, values can 

be adjusted as required to approximate the response of various vehicles. 
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The UAV model is based on aerodynamic stability derivatives (Stevens and 

Lewis, 03) and the equations of motion defined in (Cooke, et al., 92).  Coefficient values 

and descriptions are provided in Tables 8.2 through 8.5.  As with other AUVW models, 

UAV coefficients can be manipulated to model the response of other vehicles as required. 

Coefficient Value Description 
S 12.985 Wing planform area (square meters). 
b 14.84 Wingspan (meters). 
c 0.875 Average wing chord width (meters). 
ε (-4.5, 0.0, 0.0) Tail position in the body-fixed coordinate frame (meters). 
m 775 Vehicle mass (kilograms). 
Ixx 9819.59 Inertia tensor xx element. 

Iyy 7076.06 Inertia tensor yy element. 

Izz 16627.7 Inertia tensor zz element. 

Ixy, Ixz, Iyz 0.0 Inertia tensor xy, xz, and yz elements. 

Table 8.2.   UAV Physically-Based Model Vehicle Characteristics 

 

Coefficient Value Description 

CL0 0.3322 Reference lift at 0o angle of attack. 

CD0 1.772e-2 Reference drag at 0o angle of attack. 

CLα 7.556 Lift curve slope. 

CDα 8.372e-2 Drag curve slope. 

CM0 6.718e-2 Reference pitch moment at 0o angle of attack. 

CMα -3.6 Pitch moment due to angle of attack. 

CLQ 0.0 Lift due to pitch rate. 

CMQ 0.0 Pitch moment due to pitch rate 

CLαDot 0.3587 Lift due to angle of attack rate. 

CMαDot -3.771 Pitch moment due to angle of attack rate. 

Table 8.3.   UAV Physically-Based Model Longitudinal Coefficients 
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Coefficient Value Description 

CYβ -0.4032 Side force due to side slip. 

CLβ -0.15 Dihedral effect. 

CLP -9.1286 Roll damping. 

CLR 0.3599 Roll due to yaw rate. 

CNβ 1.4556 Weather-cocking stability. 

CNP -0.3815 Rudder adverse yaw. 

CNR -0.8904 Yaw damping. 

Table 8.4.   UAV Physically-Based Model Lateral Coefficients 

 

Coefficient Value Description 

CLδe 1.229e-2 Lift due to elevator or horizontal stabilator. 

CDδe 6.375e-5 Drag due to elevator or horizontal stabilator 

CMδe -6.361e-2 Pitching moment due to elevator or horizontal stabilator. 

CLδa 5.35e-3 Rolling moment due to aileron. 

CNδa 0.0 Yawing moment due to aileron. 

CYδr 2.663e-4 Side force due to rudder. 

CLδr -8.8738e-4 Rolling moment due to rudder. 

CNδr -1.049e-2 Yawing moment due to rudder. 

Table 8.5.   UAV Physically-Based Model Control Coefficients 

 
Although no attempt is made to model the aerodynamic characteristics of an 

actual vehicle with absolute accuracy, the coefficient values approximate the response of 

a UAV along the lines of the RQ-1 Predator (Figure 8.1).  The coefficient values of 

Tables 8.2 through 8.5 were derived through testing with a second UAV model based on 

the summed effects of airfoil sections as described in (Bourg, 02).  Airfoil characteristics 

were obtained from the National Advisory Committee for Aeronautics airfoil tables 

found in (Abbott and Von Doenhoff, 59).  Individual airfoils were chosen and composed 

in such a way as to reflect the approximate shape and characteristics of the wings, body, 

and control surfaces of the Predator UAV. 

At present, the AUVW does not implement a UGV model, although one will be 

developed and implemented when required.  Thus, this work does not directly address the 

application of the common data model or the ERBM controller to UGVs.  It is, however, 
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assumed that UGV applicability will ultimately prove similar in principle to the UUV, 

USV, and UAV results discussed here. 

 
Figure 8.1.   The RQ-1 Predator UAV 

 

C. EXPERIMENTAL RESULTS 

1. AVCL Translations 

A number of task-level behavior scripts and vehicle-specific missions were used 

to verify the ability to translate between data formats using XSLT and context-free 

grammars.  Vehicle availability, however, allowed for in-vehicle testing with the ARIES 

UUV only.  Correctness of the translations to and from the Phoenix UUV tasking 

language was verified using the AUVW, which is capable of simulating missions defined 

in either AVCL or the Phoenix command format.  The correctness of the translations for 

REMUS, Seahorse, and JAUS systems was confirmed using the command-format 

definitions of (Hydroid, 01), (NAVO, 04), and (JAUS, 04-4) respectively. 

In general, both translations from AVCL to vehicle-specific formats and the 

reverse translations work as described in Chapter V.  A number of observations bear 

mentioning, however.  The first is that the same AVCL task-level behavior might be 

implemented differently by different vehicles.  The AVCL UUV waypoint behavior of 

Figure 8.2, for instance, specifies transit speed as a percentage of maximum available 

power.  Translation for the Seahorse UUV yields the command depicted in Figure 8.3 
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which specifies transit speed in knots.  On the other hand, the REMUS command of 

Figure 8.4 relies on an open-loop revolutions per minute.  Similarly, an ARIES waypoint 

specifies transit speed as an open-loop voltage to the propeller motors.  Ultimately, these 

three vehicles will use three different transit speeds to execute the same waypoint 

behavior. 

 
Figure 8.2.   An AVCL UUV Waypoint Behavior 

 

 
Figure 8.3.   Translation of the AVCL Behavior of Figure 8.2 for the Seahorse UUV 

 

A second observation is that round-trip translation (i.e., from AVCL to a vehicle 

specific format and back to AVCL) does not yield an identical result to the original 

document.  Translation of the Seahorse command of Figure 8.3, for instance, results in 

separate AVCL behaviors for speed and altitude.  Additionally, the AVCL result uses the 

latitude / longitude position and speed in knots of the Seahorse command rather than the 

Cartesian coordinates and power setting of the original behavior.  This does not pose a 

significant issue in this case because the original and post-round-trip translation behavior 

sequences are identically translated for the Seahorse UUV. 

 
  <Waypoint> 
      <XYPosition x="12700" y="6420"/> 
      <Altitude value="4"/> 
      <SetPower> 
          <AllPropellers value="50"/> 
      </SetPower> 
      <TimeOut value="500"/> 
  </Waypoint> 
 

 
  Start_Order              : Waypoint_Navigation_Order 
  Scheduling_Info_Is_Timed : False 
  Destination_Latitude     : 36.716664597583815 Degrees 
  Destination_Longitude    : -121.81779490517175 Degrees 
  Transit_Mode             : Steer_to_Line 
  Transit_Altitude         : 4.0 Meters 
  Transit_Speed_In_Water   : 3.5 Knots 
  Use_SSS                  : True 
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Similarly, since MetaCommand behaviors that do not apply to a given vehicle are 

ignored during translation, their content can be lost over the course of multiple 

translations.  A REMUS WaitRun objective is easily incorporated into an AVCL task-

level behavior script using a MetaCommand behavior.  However, if this script is 

subsequently translated for use with the ARIES UUV, the MetaCommand behavior will 

be ignored (although a warning might be generated). 

 
Figure 8.4.   Translation of the AVCL Behavior of Figure 8.2 for the REMUS UUV 

 
Similarly, since MetaCommand behaviors that do not apply to a given vehicle are 

ignored during translation, their content can be lost over the course of multiple 

translations.  A REMUS WaitRun objective is easily incorporated into an AVCL task-

level behavior script using a MetaCommand behavior.  However, if this script is 

subsequently translated for use with the ARIES UUV, the MetaCommand behavior will 

be ignored (although a warning might be generated). 

The previous observations highlight a concern when vehicle-specific data is to be 

converted to AVCL and then to other vehicle-specific formats (a central premise of this 

work).  In these cases, care must be taken to ensure accurate translation.  A consistent 

geographic origin, for instance, is required to exchange position data between the 

Seahorse and ARIES UUVs to ensure accurate conversion between positions specified 

 
  [Objective] 
  Type=Navigate 
  Latitude=36N42.999875855028904' 
  Longitude=121W49.067694310305114' 
  Offset direction=0 
  Offset distance (meters)=0 
  Offset Y axis (meters)=0 
  Minimum range (m.)=20.0 
  Speed=812.5 RPM 
  Timeout (seconds)=500.0 
  Track ping interval (seconds)=0 
  Follow trackline=Yes 
  Sidescan range=30 
  Depth control mode=altitude 
  Altitude=4.0 
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with Cartesian coordinates and those specified with latitude and longitude.  Additionally, 

open-loop orders can be problematic since they can have different meanings to different 

vehicles.  The use of closed-loop AVCL behaviors, therefore, are more appropriate in 

most circumstances since they are unambiguous. 

Though not without potential pitfalls, the successful implementation of automated 

translations between AVCL, JAUS, and the command formats of the REMUS, Seahorse, 

and ARIES UUVs using XSLT, context-free grammars, and the mappings described in 

Chapter V clearly demonstrate the viability of a common autonomous vehicle data model 

defined in XML to serve as bridge between various vehicles.  Additionally, these 

translations provide strong evidence of the suitability of AVCL’s task-level behavior set 

(including the implicit behavior initiation and termination criteria) for the tasking and 

control of arbitrary vehicles.  These capabilities are further demonstrated by ERBM 

results described in the next section.  

2. ERBM Testing 

a. Overview 
The ERBM implementation described in Chapter VII was used to control 

UUV, USV, and UAV missions.  USV and UAV missions were conducted in simulation 

using the execution software and physically-based models of the AUVW.  Since the 

AUVW execution software implements AVCL task-level behaviors directly, translation 

to a vehicle-specific format was not exercised in these tests.  Thus, testing of the ERBM 

controller in this manner does not provide direct evidence of its usefulness with vehicles 

that do not directly implement the AVCL task-level behaviors.  It does, however, 

document the ability of the ERBM controller, associated planning algorithms, and task-

level behaviors to provide high-level control for various vehicle types. 

On the other hand, both simulated and in-water UUV tests were conducted 

using the existing ARIES control software.  In addition to demonstrating the suitability of 

the ERBM controller for UUVs, the ARIES experiments directly demonstrate the 

implementation of a common-data-model-based multi-layer control architecture on a 

non-data-model-compliant vehicle.  An important implication of the ARIES experiments, 

therefore, is that the ERBM controller is potentially applicable to any vehicle for which a 

translation XSLT stylesheet is developed. 
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At the time of this writing, neither the AUVW vehicle-control software 

nor the ARIES UUV implement target classification or event detection that can provide 

the ERBM controller information to fully exercise the finite state machine control.  For 

this reason, events were artificially generated in order to force the controller to execute 

state transitions and replan accordingly.  Similarly, the ARIES UUV does not possess 

sensors appropriate for MonitorTransmisssions or SampleEnvironment goals.  However, 

since these goal-types are appropriate for properly equipped ARIES-like vehicles, 

missions containing these goal types were conducted in the course of this work.  In these 

experiments, the existence of notional sensors of the appropriate types was assumed. 

b. USV and UAV ERBM Results 
Mission results of a typical ERBM-controlled USV mission in the AUVW 

simulation are depicted in Figure 8.5.  The mission-level state machine (i.e., the 

declarative agenda) contained three goals.  The first goal directed the point-search of a 

circular area for a single target.  Following target location, the vehicle was to proceed 

north to jam electronic transmissions.  If the target was not located, the vehicle was to 

proceed to the rectangular patrol area.  The agenda called for execution of the Jam goal 

upon success of the Patrol goal or mission completion upon failure.  The mission was 

also to conclude upon success or failure of the Jam goal.  Additionally, the declarative 

agenda defined three avoid areas. 

As indicated in Figure 8.5, the ERBM controller initially directed the 

vehicle to the first goal’s search area, bypassing the circular avoid area with six 

intermediate waypoints approximating a tangential arc.  Upon arriving in the operating 

area, a sector pattern was commenced in accordance with the decision tree of Figure 6.7 

(i.e., point datum and small search area relative to the sensor sweep width).  The goal was 

unsuccessful since the search pattern completed without locating the search target, so the 

vehicle began execution of the Patrol goal.  A parallel-track pattern was dictated because 

of the area’s rectangular shape and the implicit Patrol goal requirement for an area-

focused pattern.  In the depicted mission, the pattern was completed prior to the end of 

the patrol period, so the ERBM controller planned and initiated a second pattern, which 

was interrupted prior to completion at the end of the patrol period (goal successful).  The 

ERBM controller then directed the vehicle to the Jam goal operating area (bypassing the 
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polygonal avoid area).  Following successful completion of the Jam goal (correct jammer 

operation was assumed), the vehicle proceeded to the designated recovery point. 

 
Figure 8.5.   Simulated Mission Results for an ERBM-Controlled USV Executing a 

Declarative AVCL Agenda with Three Goals and Three Avoid Areas 

 

Similar results were obtained for simulated ERBM-controlled UAV 

missions as indicated by Figure 8.6.  The agenda corresponding to the depicted mission 

summary included a point-focused search, a SampleEnvironment goal, an IlluminateArea 

goal and three avoid areas.  The mission-level finite state machine called for the goals to 

be executed in order upon success and for the mission to conclude upon the successful 

completion of the IlluminateArea goal or upon the failure of any of the three goals. 

Upon commencing the mission, the ERBM controller directed the vehicle 

to the first operating area and commenced the expanding square search pattern indicated 

for a point-focused search of a circular area.  After locating the target in the eastern 

portion of the area, the vehicle proceeded to the SampleEnvironment goal’s operating 

area.  The ERBM controller directed a parallel-track pattern appropriate for 

environmental sampling over a rectangular area and the pattern was completed in the 

allotted time meeting the criteria for successful goal completion.  The vehicle then 
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proceeded to the IlluminateArea goal’s operating area and orbited for the duration of the 

illumination period before proceeding to the recovery point.  As with operation of the  

jammer in the previous example, correct operation of the illuminator was assumed. 

 
Figure 8.6.   Simulated Mission Results for an ERBM-Controlled UAV Executing a 

Declarative AVCL Agenda with Three Goals and Three Avoid Areas 

 

c. UUV ERBM Results 
Because it provides an on-vehicle example of common autonomous 

vehicle data model application, testing of the ERBM implementation on the ARIES UUV 

was more comprehensive than with other vehicle types.  Initial experiments were 

conducted to demonstrate ERBM control in the execution of single-goal AVCL agendas 

with minimal planning requirements.  Following the success of these experiments, 

increasingly complex agendas were attempted, culminating in missions containing 

multiple goals, multiple avoid areas, and more robust mission-level state machines.  

When practical, both real-world and virtual environment test missions were conducted.  

Both simulated and real-world experiments were conducted in real-time using ARIES’ 

existing control software and the ERBM implementation described in Chapter VII. 
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The first ARIES ERBM test consisted of the simulated and in-water 

execution of an AVCL agenda with a single Reposition goal and no avoid areas.  Possibly 

the most straight-forward AVCL goal type, the Reposition goal simply calls for the 

vehicle to transit from its current position to a new location.  Optional intermediate points 

can be included in the goal specification to dictate transit routing.  The Reposition goal of 

the experimental mission included five intermediate waypoints that directed the vehicle 

first to the north and then to the south prior to proceeding to the recovery point.  

Summaries of the virtual environment and in-water results are provided in Figures 8.7 

and 8.8 respectively.  As the figures indicate, the agenda was executed as desired with the 

vehicle transiting from the launch point to the recovery point while visiting each of the 

intermediate waypoints.  Variations between the simulated and in-water track can be 

attributed to perturbations of the real-world environment, imperfect in-water navigation, 

differing vehicle launch headings, and the experimentation with different steering 

equations.  While not requiring deliberative planning or decision-making, this simple 

experiment does demonstrate the use of automated AVCL task-level-behavior 

translations as part of the ERBM implementation on a non-AVCL vehicle.    

 
Figure 8.7.   ARIES UUV Virtual Environment Results for an ERBM-Controlled Mission 

with a Single Reposition Goal and No Avoid Areas 
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Figure 8.8.   ARIES UUV In-Water Results from Monterey Bay (16 June 2006) of the 

Reposition Mission of Figure 8.7 

 

Extending upon the success of the preceding experiment, a more complex 

Reposition goal was attempted in the AUVW (no in-water test was attempted because of 

a desire to focus limited in-water experimentation on more complex agendas).  Including 

multiple avoid areas but specifying only two intermediate transit points, successful 

execution of this mission required the ERBM path planner to generate, translate, and 

issue intermediate waypoints to bypass the avoid areas while utilizing the designated 

routing points.  The simulation results depicted in Figure 8.9 indicate that the ERBM 

controller did exhibit this capability with a total of nine intermediate waypoints being 

generated (in addition to those specified in the agenda) using the algorithm described in 

Chapter VI.  Thus, the ERBM implementation provides a high-level path-planning 

capability not inherently available with predefined ARIES waypoint lists.  This capability 

is implicitly exercised in the execution of more complex agendas when transiting to and 

from the operating areas for various goals. 
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Figure 8.9.   ARIES UUV Virtual Environment Results for an ERBM-Controlled Mission 

with a Single Reposition Goal and Multiple Avoid Areas 

 

Although still not calling for significant goal-achievement planning, a 

MonitorTransmissions goal does call for more robust implementation than a Reposition 

goal because it ultimately relies on a Loiter behavior to maintain position in the center of 

the operating area.  Since ARIES waypoint lists do not provide for station-keeping, 

translation of the Loiter behavior utilizes multiple waypoints that maintain the assigned 

position.  Additionally, waypoints must be recalculated and reissued for the duration of 

the monitoring period and the pattern must be interrupted when the period ends 

regardless of the status of the currently ordered waypoints. 

Summarized results for virtual environment ERBM-controlled ARIES 

missions with a single MonitorTransmissions goal are provided in Figures 8.10.  In the 

depicted mission, the ERBM controller directed the vehicle around a circular avoid area 

to the center of the rectangular operating area.  Upon reaching the operating area, the 

vehicle proceeded to a depth of one meter (ARIES does not possess a bottom-mounted 

rudder and cannot effectively maneuver on the surface), slowed to conserve power, and 



 

233 

commenced a pattern of four waypoints arranged in a 30 meter square.  Since the pattern 

was completed prior to the end of the monitor period, the controller reissued the loiter 

pattern waypoints multiple times.  However, the final pattern was not completed prior to 

the end of the monitor period (the vehicle was transiting from the first to the second 

waypoint in the pattern), so the final sequence was interrupted and the vehicle was 

directed to the agenda-defined recovery position.  As of the time of this writing, no 

corresponding in-water experiment has been conducted. 

 
Figure 8.10.   ARIES UUV Simulation Results for an ERBM-Controlled Mission with a 

Single MonitorTransmissions Goal and a Single Avoid Area 

 
Remaining goal types for which in-water or virtual environment 

experiments were conducted—Search, Patrol, and SampleEnvironment—rely on search 

patterns generated according to the decision tree of Figure 6.7 to provide for uniform 

coverage of the operating area.  Figures 8.11 and 8.12 provide summaries for virtual 

environment and in-water runs of an area-search mission with the potential for multiple 

targets.  In both cases, the controller directed the vehicle around the circular avoid area 

and commenced a parallel-track search of the rectangular operating area.  Location of the 

search target on the second leg of the pattern met part of the criteria for goal success.  

However since the goal specification indicates the potential for multiple targets, the 
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pattern was allowed to complete without interruption.  Following completion, the 

controller directed the vehicle to the recovery point, again bypassing the depicted avoid 

area.  Differences between virtual environment and in-water results are due to slightly 

different launch and recovery positions, navigation adjustments following the into-area 

and out-of-area GPS fixes of the in-water run (depicted in    Figure 8.12), and noticeably 

less responsive left-turn performance at the end of the second search-pattern leg.  

Anomalies notwithstanding, the ERBM controller performed as advertised and directed 

the vehicle into and out of the operating area while bypassing the depicted avoid area and 

commanded a predictable and effective search pattern. 

 
Figure 8.11.   ARIES UUV Simulated Results for an ERBM-Controlled Mission with a 

Single Area-Search Goal with Potentially Multiple Targets 
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Figure 8.12.   ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the 

Multi-Target Area-Search Mission of Figure 8.12 

 

Figures 8.13 and 8.14 depict virtual environment and in-water mission 

summaries for a single-target search of the same operating area as the multi-target search 

depicted in Figures 8.11 and 8.12.  As with the multi-target search, the ERBM controller 

directed the vehicle into and out of the operating area while bypassing the depicted avoid 

area.  Once in the area, the decision tree called for the same parallel track pattern used in 

the multi-target search.  However, in this case, the goal was immediately considered 

successful upon location of the target, so the pattern was interrupted and the vehicle 

proceeded to the recovery point.  As in the multi-target search example, differences 

between the virtual environment and in-water can be attributed to slightly different 

launch positions and navigation adjustment following GPS fixes during the in-water run 

depicted in Figure 8.14.  These differences, however, do not relate to the ERBM 

controller and do not effect the assessment of its performance.  Thus, these examples 

provide a suitable demonstration of the ability of the ERBM finite-state-machine-based 

controller to react to changes in current goal status while directing overall mission flow.  

As in the multi-target example, the ERBM controller performed effectively both in 

simulation and in the real-world experiment. 
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Figure 8.13.   ARIES UUV Simulated Results for an ERBM-Controlled Mission with a 

Single Area-Search Goal for a Single Target 

 

 
Figure 8.14.   ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the 

Single-Target Area-Search Mission of Figure 8.14 
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Experiments with multiple-goal agendas were conducted only in 

simulation because of the extended mission run-times.  All documented examples utilized 

the same mission which consisted of three goals and a single avoid area.  The mission 

first called for a single-target area-search.  If the target was located, the vehicle was to 

patrol a polygonal operating area.  If the search failed to locate the target, the vehicle was 

to proceed to a circular operating area for a MonitorTransmissions goal.  Success or 

failure of the MonitorTransmissions or Patrol goal indicated mission completion. 

In the experiment depicted in Figure 8.15, the vehicle was directed to the 

search area and commenced a parallel-track pattern.  Following the location of the search 

target on the second leg of the search (goal successful), the vehicle proceeded to the 

patrol area.  The irregular shape of the area dictated a traveling-salesman-problem-based 

search pattern generated using the simulated annealing algorithm described in Chapter 

VI.  The pattern was completed before the patrol period ended, so a second pattern was 

generated and commenced.  However, the patrol period ended (meeting the criteria for 

goal success) shortly after the second pattern was begun.  Thus, the pattern was 

interrupted and the vehicle transitioned to the designated recovery point. 

 
Figure 8.15.   ARIES UUV Simulated Results for an ERBM-Controlled Mission with a 

Successfully Executed Area-Search and Patrol Goals 
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As with the preceding example, the mission summarized in Figure 8.16 

began with a parallel-track search of the rectangular search area.  However, in this 

instance the search target was not located, so the area-search goal was unsuccessful.  The 

vehicle then transitioned to the operating area of the MonitorTransmissions goal.  Upon 

arrival in the area, the ERBM controller directed the vehicle to slow, change depth to one 

meter, and loiter near the center of the operating area for the duration of the monitoring 

period (again, translated for ARIES as a 30-meter square waypoint pattern.  Upon goal 

success (i.e., the end of the monitoring period), the vehicle was directed to the designated 

recovery position. 

 
Figure 8.16.   ARIES UUV Simulated Results for an ERBM-Controlled Mission with an 

Unsuccessful Area-Search Goal and a Successful MonitorTransmissions Goal 

 
The successful execution of these multi-goal agendas provides a 

demonstration of ERBM control as the vehicle progresses through the mission-level state 

machine.  Both goal-success and goal-failure transitions were executed and the vehicle 

was controlled in accordance with the mission definition in both cases. 

D. SUMMARY 
Only limited experimentation specifically focused on translations between AVCL 

and vehicle-specific data formats is documented in this chapter.  However, the techniques 
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and data mappings described in Chapter V did prove sufficient for all tests, particularly if 

the use of potentially ambiguous open-loop behaviors was avoided and care was taken to 

ensure geographic origin consistency over the course of multiple translations.  

Additionally, translation from AVCL to a vehicle-specific format is an inherent aspect of 

on-vehicle ERBM implementation, so successful ERBM experimentation with actual 

vehicles implicitly demonstrates this capability. 

The suitability of the ERBM control architecture for UAV and USV control was 

demonstrated in simulation using AUVW physically-based models and vehicle-control 

software.  Experiments with the ARIES UUV, on the other hand, provide an on-vehicle 

exemplar indicative of the broader applicability of the ERBM architecture and its 

underpinning common autonomous vehicle data model. 

ERBM experiments included missions containing AVCL Reposition, Search, 

Patrol, MonitorTransmissions, and SampleEnvironment goals.  Of the remaining goal 

types, the vehicle-rendezvous implementation of (Nicholson, 04) demonstrates the 

viability of high-level Rendezvous goal control using an architecture along the lines of 

the ERBM.  In fact, the (Nicholson, 04) control architecture characteristics are heavily 

leveraged in the overall ERBM design and provided a conceptual starting point for much 

of the work documented in Chapter VII.  Jam and IlluminateArea goals are not typical of 

the types of goals likely to be required of a vehicle along the lines of the ARIES UUV, so 

on-vehicle experiments were not conducted for these goal types.  They are potentially 

applicable to UAVs and USVs and tests have been run for these goal types using the 

AUVW.  In the conduct of these missions, appropriate mission-system operation (i.e., 

jammer or illuminator) was assumed since these systems cannot be explicitly controlled 

using the existing AVCL task-level behavior set.  Finally, the Attack, Decontaminate, 

Demolish, and MarkTarget goal types require a level of mission-system control not 

currently available in AVCL’s task-level behavior set.  Verification of the finite-state-

machine-based control of these goal-types, therefore, remains an area for future work. 
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IX. CONCLUSIONS AND RECOMMENDATIONS 

A. RESEARCH CONCLUSIONS 
The overarching hypothesis explored in this work is that despite their apparent 

differences, autonomous vehicles of a particular type have enough similarities to facilitate 

the development of a common data model capable of expressing tasking, messaging, and 

mission results for arbitrary vehicles.  Further it is surmised that this data model can be 

directly applied to actual vehicles in a variety of ways that potentially improve 

interoperability and foster the development of vehicle-independent support systems. 

Perhaps the most straightforward conclusion to be drawn is that there is enough 

commonality between various vehicles to enable the implementation of a single data 

model suitable for the representation of arbitrary vehicle tasking, messaging, and mission 

results and that XML Schema provides a suitable mechanism for formal definition of this 

data model.  XML has a number of advantages over bit-mapped binary or non-XML text-

based formats that aide in the definition and use of this common data model including 

content governance, content verifiability, readability and platform independence.  

Further, XML documents complying with a well-designed XML schema are largely self 

documenting making them easier to work with when archiving or analyzing data.  

Finally, the ease with which XML can be incorporated into applications facilitates the 

development of applications that enforce correctness by abstracting the end user from the 

data model’s syntactic and structural requirements. 

Of primary importance in the definition of a common autonomous vehicle data 

model is the design of an appropriate vehicle tasking mechanism.  This work defines a set 

of task-level behaviors that prove effective for this purpose.  Additionally, the 

development of rigorously defined behavior activation and termination criteria proved 

important aspects of the task-level behavior definition process.  Given an appropriate set 

of task-level behaviors and deterministic activation and termination criteria, any vehicle 

activity can be unambiguously represented within the constraints of the common data 

model.  This work makes significant strides towards this end, particularly where vehicle 
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motion is concerned.  Not surprisingly, virtually every subsequent aspect of this research 

relies upon a well-defined task-level behavior set.  

A corollary hypothesis of this work was that it mechanisms can be implemented 

to support automated translations between the data model and vehicle-specific data 

formats.  Thus, a second important result of this work is the development of techniques 

for translating between an XML-based data model and vehicle-specific tasking, 

messages, and results data.  A preliminary requirement to actual translation is the 

development of mappings between the common data model and vehicle-specific formats.  

By the use of exemplars, this work demonstrates the viability of mapping between 

various vehicle-specific data formats and a common autonomous vehicle data model and 

identifies a number of issues associated with these mappings and the translations that 

they support. 

XSLT is the obvious choice for converting data-model compliant data to text-

based formats as indicated by its routine use in this role in a numerous of domains.  

However the use of XSLT extensions, development of a simulated XSLT mutable 

variable pattern, and the addition of a MetaCommand behavior to the task-level behavior 

set was required to support these translations.  Although XSLT was quickly ruled out as a 

potential mechanism for the translation of vehicle-specific text into model-compliant 

XML the use of context-free grammars as translation mechanism has been explored in 

other contexts (e.g., natural language parsing).  Their use in translating vehicle-specific 

data to model-compliant XML format proved a natural extension of this application.  

Similarly, the usefulness of XML encodings of a binary formats is becoming increasingly 

common.  Two examples are provided by the development of XML encodings for the 

Distributed Interactive Simulation (DIS) protocol (McGregor, et al., 06) and JAUS 

messages (JAUS, 06).  However, these other efforts utilize the XML encodings as a 

convenient form for working with the binary data rather than as an intermediate form 

supporting ultimate translation using XSLT making the application explored in this work 

noteworthy. 

The development of a declarative means of task-specification within the data 

model results from a desire to provide a more abstract and intuitive method of mission 
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definition than is provided by scripting.  The success of a task-specification mechanism 

of this sort is implicitly based on the hypothesis that these declarative missions can be 

effectively converted into task-level behavior scripts.  Previous work with layered control 

architectures suggests methods similar to those explored in this work for generating 

increasingly detailed command sequences at lower layers of the architecture.  However, 

the goals of an AVCL declarative mission are more abstract in nature than those of 

typical layered architectures, making the task of generating task-level behavior sequences 

from AVCL goals more difficult.  In particular, the use of search and planning 

algorithms, most notably as the simulated-annealed traveling salesman problem 

algorithm, to generate area-coverage patterns (i.e., search patterns) is significant. 

On its face, the inference of declarative goals from task-level behavior sequences 

might not seem a requirement for successful application of a common autonomous 

vehicle data model.  This form of translation is, however, required in order to meet the 

goal of interchangeability of any tasking form and facilitates integration of the common 

data model into broader command and control systems for which typical autonomous 

vehicle script-level command is not always meaningful.  Based upon the premise that 

scripts that are intended to accomplish certain types of goals are potentially identifiable 

by identifiable characteristics, the work here concerning the inference of intent from task-

level behavior scripts is fairly unique.  Nevertheless, it is ultimately a requirement for the 

effective use of the common data model beyond the domain of autonomous vehicle 

operations.  Relying on the identification of suitable characteristics as well as the 

implementation of an actual script-classification mechanism, the case-based reasoning 

and naïve Bayes classification systems developed in the course of this work provide an 

initial capability.  Although surprisingly successful in their current form, they are 

considered a starting point for future work in this area. 

When combined, the translation mechanisms discussed in the preceding 

paragraphs demonstrate the general interchangeability of vehicle tasking types.  As 

indicated in Figure 9.1, vehicle tasking in any form, whether vehicle-specific or 

constrained by the data model, is potentially convertible to any other form. 
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Figure 9.1.   Mechanisms Supporting Autonomous Vehicle Tasking Form 

Interchangeability and Automated Translation between Forms 
 

A final hypothesis explored in this research is based on the observation that 

generation of task-level behavior scripts for accomplishing declarative goals is 

conceptually similar to the goal decomposition occurring at the upper levels of a multi-

layer vehicle-control architecture.  It might be possible, therefore, to implement a multi-

layer control architecture around this functionality.  Further, the ability to generate 

vehicle-specific commands from task-level behaviors implies that this architecture can be 

designed to augment a vehicle’s existing controller.  The result of exploration and 

experimentation with this hypothesis is the ERBM control architecture. 

Although similar in purpose, the common-data-model-based ERBM differs from 

other vehicle-independent command efforts in implementation.  Developmental vehicle-

independent command languages typically rely on target vehicle implementation of the 

common format (e.g., C2L) or programmatic generation of vehicle-specific commands 

using undisclosed mechanisms (e.g., CCL).  The ERBM avoids these potentially 

cumbersome requirements by making vehicle-specific command generation a function of 

the controller itself and leveraging the translation mechanisms developed in the course of 
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this work to generate suitable command sequences that accomplish high-level goals.  

This facilitates on-vehicle implementation by minimizing required modification of 

existing vehicle control software.  Thus, the ERBM implementation explored here is 

noteworthy in its method of realizing vehicle-independence. 

B. RECOMMENDATIONS FOR FUTURE WORK 
Overall, this research successfully addresses the objectives defined in Chapter I.  

However, as is typically the case with research of this sort, much remains to be 

accomplished before this work can be effectively applied to operational systems.  

Additionally, the concepts explored here might be improved, augmented, or extended in a 

number of ways to broaden their applicability. 

An obvious potential addition to this work involves the application of these 

concepts to more actual vehicles.  The mappings and translations between AVCL and 

JAUS messages, REMUS objectives, Seahorse commands and Phoenix behaviors are 

correct according to the available references.  They have not, however, been tested in an 

operational environment with actual vehicle software.  Experiments of this sort will 

further verify the assertions of this work across a broader spectrum. 

In a similar vein, a potential extension of the task-level behavior set to more fully 

meet the requirements of UGVs, USVs, and UAVs merits attention.  With the exception 

of the JAUS message set, all of the data formats experimented with in this research apply 

only to UUVs.  A rigorous analysis of existing command and message formats for other 

vehicle types will facilitate the development and implementation of behaviors appropriate 

for these types of vehicle and enable the use of a common autonomous vehicle data 

model with a broader array of vehicle types.  Ultimately, a task-level behavior extension 

of this sort will be required before the data model will provide for true compatibility 

between both dissimilar vehicles of the same type and vehicles of different types. 

As discussed briefly in Chapter VI, the task-level behavior set developed in this 

work does not provide for control of mission systems, payloads or manipulators.  Clearly, 

this limits the types of vehicle activities that can be controlled.  From the standpoint of 

the common data model, five types of declarative goals cannot be explicitly converted to 

task-level behaviors at all and the specific objectives of the remaining types (e.g., 
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frequencies of interest for a MonitorTransmissions goal) require the use of 

MetaCommand behaviors that may or may not be translatable to vehicle-specific 

commands.  Thus, the development of a broadly applicable mission-system interface 

might be the most important requirement for full realization of the potential of a common 

autonomous vehicle data model.  This is especially true of the high-level planning and 

control applications of Chapters VI and VII.  Fortunately, an interface of this sort is also a 

priority of a number of other robotics development efforts and early results are already 

becoming available.  The JAUS message set, for instance, includes commands for 

manipulating jointed manipulators and video devices (JAUS, 04-3) and a U.S. Navy-

sponsored effort is expected to release a UUV-payload interface standard later this year 

(ASTM, 06).  Regardless of which standards are ultimately accepted, incorporation of 

their functionality into the data model’s task-level behavior set will allow for more 

explicit vehicle control.  Further, this increased level of control will be available whether 

vehicle activity is directed by a predefined task-level behavior script or those scripts are 

generated by the upper layers of a hybrid control architecture (i.e., ERBM). 

The ERBM controller and the planning algorithms upon which it relies also 

provide a number of potential areas for future work.  The search planning algorithms 

described in Chapter VI, for instance, are implemented to develop a single-vehicle, 

single-pass pattern.  That is, the waypoints making up the pattern direct a single vehicle 

to cover the objective area exactly once.  Since support of multi-vehicle operations is a 

design objective of the common autonomous vehicle data model, it stands to reason that 

multi-vehicle planning algorithms should be an inherent part of a high-level controller 

based on the data model.  A planner of this sort might divide the area into subsections 

with a different vehicle assigned to each, or it might plan whole-area search patterns for 

all participating vehicles. 

Similarly, even single-vehicle searches might benefit from the development of 

plans that prescribe multiple passes over the search area (possibly at different depths or 

altitudes for UUV or UAV searches).  Using Equation 6.1, a search track-spacing of 

1.333 times the sensor-sweep width is required to obtain a probability of detection of 0.75 

for a single pattern search while a track-spacing of 4.0 times the sensor-sweep width will 

only provide a probability of detection of 0.5.  However, based on the combinatorial 



 

247 

mathematics inclusion-exclusion principle (Mendenhall, et al., 01), two searches of an 

area, each with a probability of detection of 0.5 will also provide an overall probability of 

detection of 0.75.  This raises the possibility that a widely spaced multi-pass search might 

provide for the same probability of detection as narrowly spaced single-pass search with 

a shorter overall travel-distance. 

Among the richest potential areas for future work relating to this research is the 

ERBM Tactical level.  Since  implementation efforts documented in this dissertation 

focused on Strategic-level planning and task-level behavior translation for issue to the 

Execution level (i.e., the existing vehicle control system), there is ample opportunity for 

improvement at the ERBM Tactical level.  Many more general autonomous vehicle 

research efforts that seemingly fall outside the scope of the common data model are 

potentially applicable at the ERBM Tactical level.  For instance, object detection and 

classification, localized path planning and obstacle avoidance, feature-based navigation, 

simultaneous localization and mapping, and onboard systems monitoring and associated 

fault detection and response are all appropriately implemented at the Tactical level as 

described in Chapter VII.  A corollary requirement brought about by the implementation 

of these and other Tactical-level capabilities will be the development of supporting inter-

level messages (in addition to those of listed in Table 7.3) to take advantage of new 

functionality.  Ultimately, adding ERBM Tactical-level capabilities will facilitate the 

evolution of the Strategic level goal-specific finite state machines and replanning 

capabilities. 

At least two potential areas for future work relating to script-intent inference (i.e., 

assigning an appropriate declarative goal to a task-level behavior sequence) are easily 

identified.  The results documented in Chapter VI for both the case-based reasoning and 

naïve Bayes classifiers are encouraging.  However, a more in-depth study of the 

relationship of various script characteristics to the declarative goal types, utilization of a 

larger recall set, and exploration of other machine learning techniques might provide still 

better results.  In particular, the relatively low PointSearch recall (i.e., the proportion of 

PointSearch scripts that were identified as such) for both planners provides room for 

improvement.  
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Additionally, the performance comparison between the case-based reasoning and 

naïve Bayes systems clearly indicates that the performance of both systems are more 

accurate in identifying certain types of missions than others.  The performance of both 

systems might benefit from analysis of receiver operating characteristics curves 

(Montgomery and Runger, 03) correlating to a Boolean identification for each goal type.  

Using the case-based reasoning distance metric or computed naïve Bayes a posteriori 

probabilities, the rates of true and false positives and negatives can be determined as a 

function of a minimum classification threshold for each goal type.  The ultimate 

classification, then, can be based on the curve for which a false positive is least likely 

given the actual distance or computed probability.  This classification may or may not be 

the same as would be made based solely on the minimum distance or maximum a 

posteriori probability.  Receiver operating characteristic curves might also be used to 

determining a maximum acceptable distance or minimum probability for each goal type 

(based on the resultant false positive rate) if it is determined that it is more desirable to 

fail to classify a mission than to assign it an incorrect classification. 

Although all specific objectives of this research have been addressed, the use of 

the common data model to directly support coordinated operations is not directly 

demonstrated.  Rather, the assumption is made that if message data can be translated 

between vehicle-specific formats using the common data model, vehicles will be able to 

interpret and respond to messages from other vehicles.  Demonstration of this capability 

using actual or simulated vehicles is the obvious next step.  If the ERBM is used to 

provide high-level control for all participating vehicles, data model facilitation of 

coordinated operations is obvious since inter-vehicle communications is implemented at 

data-model-dependent Tactical and Strategic levels.  In this case, translation of AVCL 

messages to vehicle-specific formats is not required and the ERBM controllers can 

potentially provide for coordinated operations even among vehicles that are not designed 

to operate as part of a multi-vehicle system.  In cases where the ERBM controller is not 

used, but the participating vehicles possess inter-vehicle communications capability, 

translations between the native formats will be required to achieve any level of 

autonomous coordination. 
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A further question remains to be addressed for any multi-vehicle system requiring 

translation between vehicle-specific message formats (i.e., a system in which one or more 

participating vehicles does not implement the data model directly).  That is, where are the 

data format translations most appropriately conducted?  A first possibility is to require all 

transmitting vehicles to convert messages to the destination vehicle’s native message 

format prior to transmission (i.e., translation occurs on the transmitting vehicle).  A 

second possibility is to allow transmitting vehicles to send messages using their own 

native format.  Receiving vehicles might then be required to translate the message to their 

own native format upon receipt (i.e., translation occurs on the receiving vehicle).  A final 

possibility is to allow transmitting vehicles to send messages using their own native 

format and using an intermediate server to translate and retransmit the message in the 

destination vehicle’s message format (i.e., translation and retransmission occurs on an 

intermediate server).  Additionally, the use of these methods might be combined and 

tailored to the capabilities of the individual vehicles.  Each of these potential translation 

paradigms has potential advantages and disadvantages, so study and experimentation 

with various configurations and operating environments is warranted. 

A peripheral follow-on to this research might involve the actual incorporation of 

the common data model into a larger command and control system.  Alluded to in a 

number of contexts thus far, this capability is a requirement for the effective integration 

of autonomous vehicles into larger scale operations.  This task is potentially simplified by 

the fact that the declarative goal-types available in AVCL are intentionally aligned with 

the JC3IEDM Action-Tasks considered most appropriate for autonomous vehicle 

execution.  Incorporation of AVCL data into a JC3IEDM system will require the 

translation of data-model documents into business objects implemented by the JC3IEDM 

system and vice versa.  Since business objects typically take the form of XML 

documents, XSLT stylesheets based on data mappings similar to those described in 

Chapter V are the most appropriate mechanisms for conducting both of the required 

translation. 

Another area of potential related research involves the investigation of data model 

use in the design and implementation of autonomous vehicle support system interfaces.  

As discussed briefly in Chapter III, the ease with which XML can be processed facilitates 
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the development of applications that effectively distance the end user from the intricacies 

of the data model.  Given the increasing emphasis on human-computer interaction aspects 

of unmanned vehicle systems, this is a potentially important data model application.  In 

fact, the straightforward realization that end users are likely to possess more mission area 

expertise than autonomous vehicle expertise, makes the fielding of intuitive systems for 

vehicle programming, monitoring and analysis crucial to the overall success of vehicle 

systems in operational environments.  The AUVW provides evidence that a vehicle-

independent data model defined as an XML vocabulary can facilitate the development of 

support systems that are both operationally robust enough to support mission 

requirements and user friendly enough to be utilized by lay operators. 

The potential influence of a common data model on the design of user interfaces 

for autonomous vehicle programming highlights a more subtle question that bears 

exploration—what is the appropriate level of mission-programming capability of an 

operational autonomous vehicle support system?  Interface simplicity and intuitiveness 

notwithstanding, it is probably undesirable to provide a lay user with the completely 

unrestricted mission definition capability.  In many instances, it might be sufficient to 

encode rules within the application to preclude mission-definition errors (e.g., a loop in 

the mission-level state machine of a declarative agenda).  In other cases, the potential 

risks posed by a mission programming error (e.g., vehicle loss or attacking the wrong 

target) might justify significant restrictions to the mission-definition process.  These 

might include the required use of built-in preplanned missions or required verification in 

simulation prior to execution in an actual vehicle.  Ultimately, a rigorous analysis of the 

potential risks associated with expected operations (i.e., operating environment, tasking, 

operator expertise, etc.) and available safeguards is required to address this issue. 

Finally, as discussed in Chapter IV, even though the data model developed in the 

course of this work provides all of the functionality required to meet the objectives of this 

research, it is not semantically rich enough to be accurately classified as an ontology.  

Given the increasing capabilities demonstrated by ontologies and Semantic Web 

applications in other domains, it is possible that a more ontological data model might 

provide advantages in this problem area as well.  Further exploration of the capabilities of 
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ontologies, Semantic Web applications, and how they might be applied to the 

autonomous vehicle domain might prove a fitting extension to this work. 
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APPENDIX A:  THE AUTONOMOUS VEHICLE COMMAND 
LANGUAGE (AVCL) 

A. INTRODUCTION 

AVCL is a schema-governed XML vocabulary intended for use in defining 

autonomous vehicle tasking, exchanging messages between vehicles, and encoding 

vehicle mission results in a meaningful way.  This appendix provides a detailed summary 

of the AVCL model’s content, structure and semantics.  The data model defined by the 

AVCL schema has evolved to support the work described here.  It is entirely likely that 

this evolution will continue as this work proceeds.  Thus, the data-model description 

provided here applies to AVCL in its current form and may not be equally applicable to 

future implementations. 

The description begins with a summary of schema-defined simple types (i.e., 

types that are defined as restrictions of existing XML primitive or derived types).  This is 

immediately followed by a description of schema-defined complex types that are reused 

in various places in the schema.  After the data-type discussion, the structure and content 

of AVCL contents is described beginning with a description of each available document 

type (i.e., valid root-level tag) and high-level document structure.  Finally, the structure, 

content and implied semantics of  documents used for mission definition, mission results 

encoding, and inter-vehicle messaging is discussed. 

Finally, it must be noted that AVCL is a developmental vocabulary.  As such a 

number of components have not been fully implemented.  Additionally, occasional 

inconsistencies or undefined elements may be encountered.  In general, these pertain to 

peripheral or infrequently required elements or portions of the schema associated with 

vehicles or operations that were not exhaustively explored in the conduct of this research. 

B. SIMPLE DATA TYPES 

1. Numerical Data Types 

Table A.1 lists and describes numerical types defined in the AVCL.  Numerical 

data that requires range constraint  All numerical data in an AVCL document requiring 

constraint beyond that provided by the XML numerical types defined in (W3C, 04-3) 
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uses one of these types.  The int, double, and unsignedShort predefined types are also 

used extensively within the AVCL schema. 

AVCL Type XML Base 
Type Range Description 

positiveScalarType double >0 Any positive double-precision floating 
point value. 

nonNegativeScalarType double >= 0 Any non-negative double-precision 
floating point value. 

positiveIntType int >0 Any positive 32-bit integer. 
nonNegativeIntType int >= 0 Any non-negative 32-bit integer. 

percentType double [0..100] Indicates a percentage of an 
unspecified maximum. 

signedPercentType double [-100..100] Indicates a signed percentage of an 
unspecified maximum. 

calendarDaysType unsignedByte [1..31] Enumeration for the day-of-the-
month portion of a calendar date. 

clockHoursType unsignedByte [0..23] Enumeration for the hour portion of a 
wall-clock time. 

clockMinutesOrSecondsType unsignedByte [0..59] Enumeration for the minute or 
second portion of a wall-clock time. 

timeZoneType byte [-12..12] Enumeration for a time zone relative 
to Greenwich Mean Time . 

latitudeType double [-90..90] Any latitude value (positive indicates 
northern hemisphere). 

longitudeType double [-180..180] Any longitude value (positive 
indicates eastern hemisphere). 

headingType double (0..360] An orderable vehicle heading 
(degrees). 

orientationType double (-360..360) An angle (degrees) describing a 
vehicle Euler angle. 

areaOrientationType double [-90..90] 
Represents a rotation angle for a 
geographic area (positive indicates 
clockwise). 

priorityType int [1..255] Value defining a message priority 
(lower indicates higher priority). 

Table A.1.   AVCL Numerical Simple Types. 

 

2. String Enumerations 

The AVCL schema defines a number of string-based enumerations.  As 

mentioned in Chapter IV, defining string types such as these is equivalent to using integer 

enumerations.  The use of meaningful strings, however, instead of integers makes for 

more readable and intuitive documents.  A description of available types, their valid 

values and their meanings follows. 
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• uuvCapabilityType:  describes a capability that a UUV must possess in 
order to successfully complete a defined mission.  Valid values: 

thrusterPowered:  vehicle uses propellers to maintain forward speed. 
bodyThrustersInstalled:  vehicle must possess cross body thrusters that 
enable vertical, lateral and rotational motion regardless of forward speed. 
hoverCapable:  vehicle must be capable of stationary hovering. 
altitudeCapable:  vehicle must be capable of maintaining a specified 
altitude above the bottom. 
gpsCapable:  vehicle must be capable of GPS navigation. 
communicationsCapable:  vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications. 

• ugvCapabilityType:  describes a capability that a UGV must possess in 
order to successfully complete a defined mission.  Valid values: 

tracked:  vehicle must be tracked vice wheeled. 
gpsCapable:  vehicle must be capable of GPS navigation. 
communicationsCapable:  vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications. 

• usvCapabilityType:  describes a capability that a USV must possess in 
order to successfully complete a defined mission.  Valid values: 

gpsCapable:  vehicle must be capable of GPS navigation. 
communicationsCapable:  vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications. 

• uavCapabilityType:  describes a capability that a UGV must possess in 
order to successfully complete a defined mission.  Valid values: 

fixedWing:  vehicle must be fixed wing. 
rotaryWing:  vehicle must be rotary wing (hover capable). 
multiEngine:  vehicle must have more than one engine. 
gpsCapable:  vehicle must be capable of GPS navigation. 
communicationsCapable:  vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications. 

• frequencyUnitType:  specifies frequency units for an acoustic or 
electromagnetic transmission.  Valid values: 

Hz:  hertz. 
KHz:  kilohertz. 
MHz:  megahertz. 
GHz:  gigahertz. 

• turnDirectionType:  specifies a turn direction.  Valid values: 

left:  turn is to be to the vehicle’s left or port. 
port:  same as left. 
right:  turn is to be to the vehicle’s right or starboard. 
starboard:  same as right. 
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• trackModeType:  specifies a waypoint homing mode.  Valid values: 

directTo:  always travel directly towards the goal location. 
trackTo:  always correct to a specified track so as to approach the 
waypoint from a specific direction. 

• monthsType:  specifies a calendar month.  Valid values: 

January, February, March, April, May, June, July, August, September, 
October, November, and December. 

• datumType:  specifies whether a search is to focus on a single point 
(operating area center) or provide for full area coverage.  Valid values: 

point:  the search is to focus on the centroid of the operating area. 
area:  the search is to provide equal coverage of the entire operating area. 

• illuminatorType:  specifies a type of illuminator capable of providing area 
illumination.  Valid values: 

pyrotechnic:  flare or other pyrotechnic illumination source. 
spotlight:  directable searchlight or spotlight illumination source. 

• markerType:  specifies a type of marker for location or object marking.  
Valid values: 

laser:  laser designator marking. 
smoke:  visible smoke marker. 

• contaminantType:  specifies a type of contaminant that is to be tested for 
or cleansed.  Valid values: 

nuclear:  radiological contamination or hazard. 
chemical:  chemical weapon or agent contamination. 
biological:  biological contamination or hazard. 
toxin:  potentially poisonous or hazardous substance or chemical. 
explosive:  explosive agent or component. 

• weaponStatusType:  specifies the conditions under which weapons can be 
employed.  Valid values: 

safe:  Weapons authorized in self defense or in response to a formal order. 
tight:  Weapons authorized against targets positively identified as hostile. 
free:  Weapons authorized against targets not positively identified as 
friendly or neutral. 

• reportingCriteriaType:  specifies when a vehicle is to make status reports 
while attempting to accomplish an agenda-mission goal.  Valid values: 

never:  do not make status reports. 
periodic:  make status reports at specified intervals. 
statusChanged:  make status reports when goal-execution status changes. 
onCommence:  report when commencing execution of a goal. 
onComplete:  report when completing execution of a goal. 
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• acknowledgeType:  specifies the circumstances under which receipt of a 
message is to be acknowledged.  Valid values: 

yes:  always acknowledge receipt of this message. 
no:  never acknowledge receipt of this message. 
optional:  acknowledgement is permissible but not required. 
positiveOnly:  only acknowledge this message if the requested information 
or action will be provided. 
negativeOnly:  only acknowledge this message if the requested 
information or action will not be provided. 

• informationRequestType:  content for information request messages 
defining the type of information that is being requested.  Valid values: 

ping:  request for a simple presence message. 
sensorData:  request for a sensor data report 
contactSummary:  request for a summary of all current contacts. 
controlSettings:  request for the receiving vehicle’s currently ordered 
control settings. 
posture:  request for the vehicle’s current location and orientation 
information. 
velocity:  request for the vehicle’s current velocity information. 
waypoint:  request for the vehicle’s next destination location. 

• vehicleGroupCompositionType:  content for messages relating to the 
maintenance of cooperating groups of vehicles.  Valid values: 

initiateGroupFormation:  begin the group-formation process. 
finalizeGroupFormation:  end group-formation and begin work. 
dissolveGroup:  terminate the existence of a group and release all vehicles 
making up the group for other tasking. 
locateGroup:  sending vehicle is attempting to make contact with an 
established group if one is present. 
joinGroup:  sending vehicle is attempting to join an established group. 
leaveGroup:  sending vehicle is leaving an established group. 

C. REUSABLE COMPLEX DATA TYPES 

AVCL defines a number of reusable complex types.  These define element 

content models including child element and attribute names and types. 

The most rudimentary AVCL complex type is the noValueElementType.  

Instantiated elements of this type have no child elements and are intended to convey 

information primarily through the assigned element name.  These elements may include 

the optional attributes listed in Table A.2.  These attributes, referred to as AVCL’s 

“common attributes,” are valid with any element in the AVCL tag set.  Their use 

throughout the schema is assumed to comply with Table A.2 unless otherwise noted. 
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Attribute Name Type Use Description 

description xsd:string optional Provides arbitrary amplifying information 
describing the element. 

timeStamp positiveScalarType optional Used to associate a time with the element. 

id xsd:ID optional Unique identifier that can be used elsewhere 
to reference this element. 

Table A.2.   Optional Attributes Available for use with all AVCL Elements 

 

AVCL defines a number of complex types with a single data item.  Described in 

Table A.3, these complex types use a “value” attribute to hold the data of interest.  The 

attribute type is constrained using a built-in XML (indicated by the XML “xsd” 

namespace designator) or an AVCL simple type.  A numericalBlockElementType is also 

available.  This type uses required “minimum” and “maximum” attributes 

(nonNegativeScalarType and positiveScalarType) to specify a numerical range. 

Complex Type Value Attribute Type Value Attribute Description 

scalarElementType xsd:double A double precision numerical value.

positiveScalarElementType positiveScalarType A positive double-precision 
numerical value. 

nonNegativeScalarElementType nonNegativeScalarType A non-negative double-precision 
numerical value 

integerElementType xsd:int A 32-bit integer. 

positiveIntegerElementType positiveIntType A positive 32-bit integer. 

nonNegativeIntegerElementType nonNegativeIntType A non-negative 32-bit integer. 
booleanElementType xsd:boolean A Boolean value. 

stringElementType xsd:string An arbitrary string value. 

tokenElementType xsd:token A white-space-free string value. 

percentElementType percentType A percentage. 

signedPercentElementType signedPercentType A signed percentage. 

headingElementType headingType An orderable vehicle heading. 

areaOrientationElementType areaOrientationType A rotation angle to be applied to a 
geographic area. 

priorityElementType priorityType Specifies a message priority. 

acknowledgeElementType acknowledgeType Specifies message 
acknowledgement requirements. 

trackModeElementType trackModeType Specifies a waypoint homing mode.

Table A.3.   AVCL Complex Types Containing a Single Data Item in the form of a 
“value” Attribute 
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Among the requirements of an autonomous vehicle data model is the ability to 

specify geographic positions.  AVCL types and attributes available for this purpose are 

depicted in Figure A.1 and Table A.4.  All AVCL positions derive from one of two types 

(xyElementType and latitudeLongitudeElementType) that encode a latitude and longitude 

or a Cartesian coordinate pair.  AVCL extends these types to implement absolute and 

relative positions through the AbsoluteHorizontalPositionElements and 

HorizontalPositionElements groups of Figure A.1.  These, in turn, form the basis of the 

horizontalPositionElementType and absoluteHorizontalPositionElementType complex 

types (not depicted) that consist of an element with a single absolute or relative position 

child element. 

 
Figure A.1.   AVCL Complex Types and Groups for Representing Geographic Position 

 

Name Type Description 

x xsd:double Specifies a Cartesian x coordinate in either the global coordinate 
frame or relative to the current vehicle position. 

y xsd:double Specifies a Cartesian y coordinate in either the global coordinate 
frame or relative to the current vehicle position. 

latitude latitudeType Specifies the latitude portion of a geographic position. 

longitude longitudeType Specifies the longitude portion of a geographic position. 

Table A.4.   Attributes of AVCL Elements Available for Representing Absolute and 
Relative Positions 
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An obvious application of the AVCL types for specifying position is a set of types 

for specifying geographic areas.  Areas in AVCL are specified as points, circles, 

rectangles, or polygons.  A point consists of an element (with a “Point” name and the 

common AVCL attributes) with a single child (absoluteHorizontalPositionElementType). 

The structure and composition of the circleElementType, polygonElementType and 

rectangleElementType are depicted in Figures A.2, A.3, and A.4 respectively.  The 

circleElementType is fairly self-explanatory and specifies the area with child elements 

containing the geographic center of the circle and a radius in meters.  Polygons are 

specified simply with a sequence of either latitudeLongitudeElementType or 

xyElementType position elements containing the ordered vertices of the polygon.  

Rectangles are specified with child elements for the geographic position of the northwest 

corner, the horizontal width in meters, the height in meters, and an optional element for a 

clockwise angle of rotation in degrees.  An AreaElements group is used to provide a 

container type for a single area element. 

 
Figure A.2.   The AVCL circleElementType for Specifying a Geographic Area as a Circle 
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Figure A.3.   The AVCL polygonElementType for Specifying a Geographic Area as an 

Arbitrary Polygon 

 
Figure A.4.   The AVCL rectangleElementType for Specifying a Geographic Area as a 

Rectangle 

 
Also useful in various portions of an autonomous vehicle data model is the ability 

to represent vehicle and contact states.  The position elements described above are 

applicable here, however vehicle orientation and velocity are also important.  AVCL 



 

262 

provides four basic types for this purpose:  orientationElementType, 

worldCoordinateVelocityElementType, bodyCoordinateVelocityElementType and 

dopplerVelocityElementType.  Each of these consists of childless elements with the 

attributes described in Tables A.5 through A.7. 

Attribute Use Type Description 

phi optional orientationType Euler angle rotation about the body or world 
coordinate frame X axis (bank).  

theta optional orientationType Euler angle rotation about the body or world 
coordinate frame Y axis (pitch).  

psi optional orientationType Euler angle rotation about the body or world 
coordinate frame Z axis (yaw).  

Table A.5.   AVCL Orientation Element Type Attributes 

 

Attribute Use Type Description 

xDot optional xsd:double 
Linear velocity (meters per second) along the 
X axis of the world coordinate frame (north 
positive).  

yDot optional xsd:double Linear velocity along the Y axis of the world 
coordinate frame (east positive).  

zDot optional xsd:double Linear velocity along the Z axis of the world 
coordinate frame (down positive). 

phiDot optional xsd:double Angular velocity (degrees per second) about 
the X axis of the world coordinate frame. 

thetaDot optional xsd:double Angular velocity about the Y axis of the world 
coordinate frame. 

psiDot optional xsd:double Angular velocity about the Z axis of the world 
coordinate frame. 

u optional xsd:double Linear velocity along the X axis of the body 
coordinate frame (vehicle forward).  

v optional xsd:double Linear velocity along the Y axis of the body 
coordinate frame (vehicle right).  

w optional xsd:double Linear velocity along the Z axis of the body 
coordinate frame (vehicle down). 

p optional xsd:double Angular velocity about the X axis of the body 
coordinate frame. 

q optional xsd:double Angular velocity about the Y axis of the body 
coordinate frame. 

r optional xsd:double Angular velocity about the Z axis of the body 
coordinate frame. 

Table A.6.   Attributes Defined by the AVCL Complex Types for Representing Velocity 
Relative to the World-Fixed and Body-Fixed Coordinate Frames 
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Attribute Use Type Description 

speedOverGroundU optional xsd:double Computed or measured forward linear 
velocity over the ground. 

speedOverGroundV optional xsd:double Computed or measured lateral linear 
velocity over the ground. 

speedThroughMediumU optional xsd:double Computed or measured forward linear 
velocity through the air or water. 

speedThroughMediumV optional xsd:double Computed or measured lateral linear 
velocity through the air or water. 

Table A.7.   AVCL Attributes for Representing Doppler-Based Velocity Over the Ground 
and Through the Air or Water 

 

Similar in concept to AVCL’s state types are a set of groups used to specify 

depth, altitude, and speed.  These elements are used to indicate partial vehicle or contact 

state, ordered behavior requirements, and to define the vertical characteristics of areas.  

Each group provides for the selection of a single element.  The names and types of the 

elements associated with each of these groups are described in Table A.8.  In some 

instances, these types are further grouped using the AVCL VerticalBlockElements group 

that provides for the selection of a single subgroup from the table. 

Type Element Name Type Description 

Depth nonNegativeScalarElementType Depth (meters) of a vehicle or 
contact below the ocean surface. 

DepthTypeElements 
Altitude nonNegativeScalarElementType Altitude (meters) of a vehicle or 

contact above the ocean surface. 

DepthBlock numericalBlockElementType Specifies a depth below the 
surface range. 

AltitudeBlock numericalBlockElementType Specifies an altitude above the 
bottom range. DepthBlockElements 

DepthAltitudeBlock numericalBlockElementType 
Specifies a minimum depth to 
minimum altitude above the bottom 
range. 

AGLAltitude nonNegativeScalarElementType Specifies an above-ground-level 
altitude (meters). 

AltitudeTypeElements 
MSLAltitude nonNegativeScalarElementType Specifies a mean-sea-level altitude 

(meters). 

AGLAltitudeBlock numericalBlockElementType Specifies a range of above ground 
level altitudes. 

MSLAltitudeBlock numericalBlockElementType Specifies a range of mean sea 
level altitudes. AltitudeBlockElements 

AGLMSLALtitudeBlock numericalBlockElementType 
Specifies a maximum mean sea 
level to minimum above ground 
level altitude range. 

Speed nonNegativeScalarElementType Specifies a speed in meters per 
second. 

SpeedTypeElements 
Knots nonNegativeScalarElementType Specifies a speed in nautical miles 

per hour (knots). 

Table A.8.   AVCL Groups Used to Specify Depth, Altitude and Speed  
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The preceding types are among the most commonly utilized.  Other complex 

types defined by the AVCL schema are less widely used.  These are discussed in 

conjunction with the sections of AVCL to which they are applicable. 

D. TOP-LEVEL DOCUMENT STRUCTURE 
There are three valid AVCL root element tags:  “AVCL,” “AVCLMessage” and 

“AVCLMessageList.”  A document with an “AVCL” root element defines a single 

mission definition or contains results from an executed mission.  A document with an 

“AVCLMessage” root element contains a single inter-vehicle message.  Finally, 

documents with an “AVCLMessageList” root element contain one or more messages. 

The high-level structure of the “AVCL” element is depicted in Figure A.5.  

Children include an optional “head” element containing “meta” elements that can encode 

arbitrary descriptive information and a required “body” element that contains the actual 

mission definition and results.  Attributes associated with these and other immediate 

descendants of the “AVCL” element are listed in Table A.9. 

 
Figure A.5.   Structure of the AVCL Root Element for Mission Definition and Mission 

Results Documents 
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The “body” element contains a required “MissionPreparation” element and 

optional “EventLog” and “MissionResults” elements (the latter two are discussed in 

Section F).  The “MissionPreparation” element (Figure A.6) has one required child 

(“UnitsOfMeasure”) which indicates the units used throughout the document.  Optional 

children consist of a “GeoOrigin” element defining the origin of the world-fixed 

coordinate frame, a “Configuration” element describing the characteristics of the vehicle 

for which the document is intended, and a mission-definition element (discussed in 

Section E).  The “Configuration” element contains optional “Dimensions,” 

“OperatingCharacteristics,” and “DegreesOfControl” elements, and zero or more 

“Capability” elements.  The attributes of the “Dimensions” and “DegreesOfControl” 

elements are listed in Table A.9 and the “Capability” element has a single “value” 

attribute constrained by one of the previously discussed vehicle-specific capability types 

(e.g., uuvCapabilityType).  Attributes associated with an “OperatingCharacteristics” 

element vary with vehicle type (see the AVCL schema for a further description). 

The remaining AVCL root elements, “AVCLMessage” and “AVCLMessageList” 

are used to encode inter-vehicle message data.  Their content models are discussed in 

detail Section G of this appendix.  The high-level structure of both elements (depicted in 

Figure A.7) is similar to that of the “AVCL” element in that the immediate children of 

both are a “head” element (optional for the “AVCLMessageList” element) and a “body” 

element.  In fact, the content model of the “head” child of an “AVCLMessageList” 

element is identical to that of an “AVCL” element as are all of the root-element 

attributes.  The “body” child element of an “AVCLMessageList” element contains one or 

more “AVCLMessage” elements.  The attributes of an “AVCLMessage” element include 

the common AVCL attributes and a mandatory “version” attribute with a fixed value of 

“1.0.”  The content models of the “head” and “body” elements of an “AVCLMessage” 

element are discussed in Section G. 
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Element Attribute Use Type Description 

version required fixed "1.0" Identifies the AVCL version. 

vehicleType optional xsd:string Identifies a vehicle type to 
which the document applies. 

vehicleID optional xsd:unsignedShort Identifies a specific vehicle to 
which the document applies. 

AVCL 

date optional xsd:date Document or mission date. 

name required xsd:string The type of annotating 
information encoded. meta 

content optional xsd:string Amplifying information. 

distance required fixed "meters" All AVCL distances are 
specified in meters. 

angle required fixed "degrees" AVCL angles are degrees. 
mass required fixed "kilograms" AVCL masses are kilograms. 

UnitsOfMeasure 

time required fixed "seconds" AVCL times are seconds. 

latitude required latitudeType Latitude of the world-fixed 
coordinate frame origin. 

longitude required longitudeType Longitude of the world-fixed 
coordinate frame origin. GeoOrigin 

radiusOfInterest optional positiveScalarType Rough estimate of the 
operating area size. 

length required positiveScalarType Vehicle longitudinal length. 

width required positiveScalarType Vehicle lateral width or 
wingspan. 

height required positiveScalarType Vehicle vertical height. 
Dimensions 

mass required positiveScalarType Vehicle mass. 

longitudinal optional xsd:boolean Indicates fore / aft 
controllability (default true). 

lateral optional xsd:boolean Indicates left / right 
controllability (default false). 

vertical optional xsd:boolean Indicates vertically 
controllability (default false). 

roll optional xsd:boolean Indicates roll controllability 
(default false). 

pitch optional xsd:boolean Indicates pitch controllability 
(default false). 

DegreesOfControl 

yaw optional xsd:boolean Indicates yaw controllability 
(default true). 

Table A.9.   AVCL Attributes Associated with the “AVCL” Element and its Immediate 
Descendants 
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Figure A.6.   The Content Model of the AVCL “MissionPreparation” Element 

 

 
Figure A.7.   AVCL Document Root Elements for Inter-Vehicle Message Passing 
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E. MISSION DEFINITION 

1. Task-Level Behavior Scripts 

a. Overview 
AVCL provides two basic methods for specifying a mission.  The first is 

using task-level behavior scripts.  Depicted in Figure A.6, a task-level behavior script is 

specified using one of the vehicle-type-specific script tags from the MissionSpecification 

group.  Each of these elements contains a sequence of one or more task-level behaviors 

associated with the particular vehicle type.  Available behaviors for each vehicle type are 

described in the following sections. 

b. UUV Behaviors 

AVCL defines 30 UUV task-level behaviors.  Among these are behaviors 

classifiable as closed-loop / terminating, closed-loop / open-ended, open-loop, and 

miscellaneous behaviors as described in Chapter IV as well as a number of behaviors that 

pertain to missions run in simulation.  The remainder of this section describes these 

behaviors, each of which is specified with an element with the behavior name. 

The CompositeWaypoint behavior (Figure A.8) is used to succinctly 

define a predefined pattern of waypoints.  The “CompositeWaypoint” element’s first 

child element is used to specify the type of pattern (IMO and ICAO, 98) using one of the 

elements depicted in  Figure A.9.  The required attributes (described in Table A.10) 

parametrically specify the characteristics of the pattern and the child element specifies the 

position of the first waypoint.  Depth below the surface or altitude above the bottom that 

the vehicle is to maintain throughout the pattern is included with a “Depth” or “Altitude” 

element.  An optional “HomingMode” element determines whether the vehicle is to 

adhere to the tracks defined by the waypoints or proceed directly to each waypoint.  

Vehicle speed is optionally ordered with the next child element (content models are 

covered with the same-name behaviors).  Finally, optional “GpsFixes,” “Standoff,” and 

“TimeOut” elements are used to specify the number of fixes to obtain over the course of 

the pattern, how close (meters) the vehicle must get to each waypoint before proceeding 

to the next, and how long (seconds) the vehicle has to achieve each waypoint. 
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Figure A.8.   The AVCL UUV-Specific Composite Waypoint Task-Level Behavior 
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Figure A.9.   AVCL Elements for Parametrically Specifying a Pre-Defined Waypoint 

Pattern 

 

Attribute Type Description 

orientation headingType Heading of the first leg of the pattern. 

firstTurn turnDirectionType Direction of the pattern's first turn. 

trackLength positiveScalarType Length (meters) of a parallel track pattern's tracks. 

trackSpacing positiveScalarType Distance (meters) between the pattern's parallel tracks. 

trackCount positiveIntType The number of tracks or legs in a parallel-track or expanding-
square pattern. 

sectorCount positiveIntType The number of sectors in a sector pattern. 

sectorWidth positiveScalarType Width (degrees) of the sectors in a sector pattern 

radius positiveScalarType The radius (meters) of the enclosing circle of a sector pattern. 

Table A.10.   Attributes Associated with AVCL Composite Waypoint Elements 
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A FollowBeacon behavior is used to order the vehicle to proceed directly 

towards source of a beacon or transponder.  The specific beacon is optionally defined 

with a “Beacon” element of type stringElementType (if no beacon is listed, vehicle 

defaults determine the nature of the beacon).  An optional “TimeOut” element is used to 

specify how long the vehicle is to proceed towards the beacon.  If no time out is included 

or the vehicle reaches the source before the time out expiration, the behavior terminates. 

A GpsFix behavior directs the vehicle to the surface for a GPS fix (other 

control aspects are not affected).  It is defined using an extension to the 

booleanElementType.  A “value” attribute of “true” initiates the behavior, while a value 

of “false” terminates an active GpsFix behavior (a GpsFix behavior with a “value” 

attribute of “false” is ignored if no GpsFix behavior is active).  An optional “timeOut” 

attribute (nonNegativeScalarType) is used to set the maximum allowable time the 

behavior is to be active.  Omitting the “timeOut” attribute or setting it to zero means that 

the vehicle is to remain surfaced until the fix is obtained.  The GpsFix behavior 

terminates when a fix has been obtained, the behavior times out, or a new GpsFix 

behavior with a “value” attribute of “false” is activated.  Upon termination, the 

previously active depth-control behavior resumes. 

A Hover behavior is used to direct the vehicle to maintain a fixed position 

at a specific location (i.e., hover in place).  Defined as depicted in Figure A.10, behavior 

requirements are encoded in the children (all optional) of a “Hover” element.  The first 

child is from the HorizontalPositionElements group and specifies the hover location in 

either absolute terms or relative to the vehicle’s position upon behavior activation.  If this 

element is omitted, the vehicle is to hover at the current location.  The next element, from 

the DepthTypeElements group, specifies depth below the surface or altitude above the 

bottom for both transit and hover.  Omitting this element retains the previous depth 

behavior.  Inclusion of a “Heading” element (headingElementType) specifies the heading 

to maintain while hovering, while omission retains the previous heading behavior in the 

hover.   An optional “ObtainGps” element (booleanElementType) can direct the vehicle 

to obtain a GPS fix during while transiting to the hover point.  A “Standoff” element 

(positiveScalarTypeElement) defines the acceptable distance (meters) from the ordered 

hover location.  Finally, a “TimeOut” element (positiveScalarTypeElement) specifies the 
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maximum time allotted to reach the designated location and establish a steady hover 

(omission of this element means that the behavior will not time out).  The Hover behavior 

terminates when a steady is established or the behavior times out unless extended with a 

Wait or WaitUntilTime behaviors (description to follow).  

 
Figure A.10.   An AVCL Element for Initiating a UUV Hover Behavior 

 

Similar to the Hover behavior, a Loiter behavior also directs the vehicle to 

remain at a specific location, however it does not require the vehicle to remain stationary.  

Constructed as depicted in Figure A.11, the Loiter behavior parameters are contained in 

the children of a “Loiter” element.  The first child element comes from the 

HorizontalPositionElements group and specifies the loiter location.  If this element is 

omitted, the current position is to be used.  The next child, from the DepthTypeElements 

group, determines the transit depth below the surface or altitude above the bottom.  If 
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omitted, the currently active depth behavior remains in effect.  A transit-speed is ordered 

using a “SetPower,” “MakeKnots,” or “MakeSpeed” element with a content model 

matching that of the behavior of the same name.  If no speed is included, the greater of 

the minimum acceptable transit speed and the most recently ordered speed is to be used.  

Vehicle speed upon reaching the loiter point is vehicle-specific.  A required 

“LoiterDepth” positiveScalarElementType element specifies the depth at which the 

vehicle is to loiter.  Finally, a “TimeOut” element (positiveScalarElementType) is used to 

specify a maximum allowable time to reach the loiter point (if omitted, the behavior will 

not time out).  The Loiter behavior terminates upon time out or upon reaching the loiter 

point (whichever occurs first) unless the behavior termination is suspended with a Wait 

or WaitUntilTime behavior. 

 
Figure A.11.   AVCL Element for Initiating a UUV Loiter Behavior 
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Available closed-loop / open-ended behaviors include a MakeAltitude, 

MakeDepth, MakeHeading, MakeKnots, and MakeSpeed.  These behaviors are 

summarized in Table A.11.  MakeAltitude and MakeDepth behaviors are defined using a 

positiveScalarElementType to command an altitude above the bottom or depth below the 

surface in meters.  MakeHeading orders vehicle heading in degrees.  MakeKnots and 

MakeSpeed are used to order a specific vehicle speed in nautical miles per hour (knots) 

or meters per second respectively.  Both behaviors are defined with an extended 

positiveScalarElementType element with an optional Boolean parameter 

(“speedOverGround”) that determines whether the behavior is ordering speed over the 

ground or through the water.  All of these behaviors remain active until superseded. 

Behavior AVCL Type Description 

MakeAltitude positiveScalarElementType Orders the vehicle to maintain a specified altitude 
above the bottom (meters). 

MakeDepth positiveScalarElementType Orders the vehicle to maintain a specified depth 
below the surface (meters). 

MakeHeading headingElementType Orders the vehicle to maintain a specified heading 
(degrees). 

MakeKnots extended 
positiveScalarElementType

Orders the vehicle to maintain a specified speed 
over the ground or through the water (knots). 

MakeSpeed extended 
positiveScalarElementType

Orders the vehicle to maintain a specified speed 
over the ground or through the water (meters per 
second). 

Table A.11.   Available AVCL UUV Closed-Loop / Open-Ended Behaviors 

 
As described in Chapter V, the MetaCommand behavior does not directly 

effect vehicle control, but it provides a useful container for annotating information that 

effects how the script is interpreted or converted to vehicle-specific formats.  The 

“MetaCommand” element content model matches that of the “meta” element discussed in 

the previous section in both content and interpretation. 

AVCL provides two behaviors for replacing or adding to an executing 

script.  The MissionScript and MissionScriptInline behaviors are both defined using a 

stringElementType element where the “value” attribute indicates the path to the new task-

level behavior script.  The MissionScript behavior is used to replace the currently 

executing script completely.  The MissionScriptInline behavior, on the other hand, inserts 

the newly loaded script into the currently executing script at the current position. 



 

275 

The MoveLateral and MoveRotate behaviors apply only to UUVs with 

cross-body thrusters.  The MoveLateral behavior requires the vehicle to use its thrusters 

to slide laterally while the MoveRotate behavior requires the vehicle to use its thrusters to 

rotate about the body-fixed coordinate system Z axis.  Both open-loop behaviors are 

defined with a signedPercentElementType element where the “value” attribute indicates 

the percentage of available power to apply to the thrusters and both remain active until 

superseded by a behavior requiring heading, hover, or waypoint control. 

A Quit behavior is used to indicate the end of a script.  Following 

activation, all other active behaviors are terminated and the vehicle will initiate any 

required mission conclusion procedures.  The “Quit” element has up to one optional child 

element (noValueElementType) that is used to indicate the reason the behavior was 

activated.  Allowable child element names are “NormalExit,” “MissionAbort,” 

“SystemAbort,” and “RecallAbort.” 

The Realtime behavior is the first that pertains exclusively to missions run 

in simulation.  This behavior is initiated using a booleanElementType element and is used 

to toggle a simulation between real-time execution (i.e., simulation elapsed time equals 

elapsed clock time) and fastest possible execution (i.e., simulation elapsed time greater 

than elapsed clock time).  The most recently activated real-time setting remains in effect 

until superseded. 

A SendMessage behavior is used to conduct inter-vehicle 

communications.  The sole child element of a “SendMessage” element is an 

“AVCLMessage” element that is to be transmitted.  The message content model of the is 

discussed in Section G. 

AVCL provides open-loop behaviors to control the rudder, horizontal 

control planes, propellers and cross-body thrusters.  The simplest of these is the 

SetRudder behavior which uses a signedPercentElementType element to order rudder 

deflection as a percentage of the maximum authority.  On vehicles with bow and stern 

rudders, the command is applied to the stern rudder and the bow rudder receives the 

opposite order.  As with all open-loop behaviors, the order directs a control setting, but 

not necessarily a direction of vehicle movement.  For instance a positive rudder setting 
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orders the forward edge of the stern rudder to the right but has the effect of yawing the 

vehicle to the left.  The SetPlanes, SetPower, and SetThruster behaviors are described in 

Table A.12.  The element used to define each of these behaviors contains one child 

element (signedPercentageElementType) from those listed in the table that identifies the 

specific controller that the behavior orders.  As with the SetRudder behavior, the control 

setting is ordered as a percentage or maximum authority.  Unless otherwise specified, 

behaviors that attempt to affect controllers not possessed by the target vehicle are 

ignored.  All of the open-loop behaviors remain in effect until superseded. 

Behavior Child Element Order Description 

BowPlane Percent of maximum deflection for the bow horizontal 
planes (positive indicates forward edge up). 

SternPlane Percent of maximum deflection for the aft horizontal 
control planes (positive indicates forward edge up) SetPlanes 

AllPlanes 
Combined order for fore and aft control planes.  Planes will 
deflect in opposite directions.  The sign of the "value" 
attribute is applied to the stern plane. 

PortPropeller Percent of maximum power from the port propeller (if 
single-prop, the order applies to the single propeller). 

StarboardPropeller Percent of maximum power from the starboard propeller If 
single-prop, the order applies to the single propeller). 

CenterlinePropeller Percent of maximum power from the port propeller (if 
single-prop, the order applies to the single propeller). 

SetPower 

AllPropellers Orders a percentage of maximum power from all 
propellers. 

BowLateralThruster 
Percent of maximum power from the bow-lateral cross-
body thruster (positive pushes the vehicle nose to the 
right) 

SternLateralThruster 
Percent of maximum power from the stern-lateral cross-
body thruster (positive pushes the vehicle stern to the 
right). 

LateralThrusters Percent of maximum power from all lateral cross-body 
thrusters (positive pushes the vehicle to the right). 

BowVerticalThruster Percent of maximum power from the bow-vertical cross-
body thruster (positive pushes nose of vehicle down). 

SternVerticalThrusters Percent of maximum power from all vertical cross-body 
thrusters (positive pushes the vehicle stern down). 

SetThruster 

VerticalThrusters Percent of maximum power from the stern-vertical cross-
body thruster (positive pushes stern of vehicle down). 

Table A.12.   AVCL Open-Loop Behaviors for Control of Propellers, Cross-Body 
Thrusters and Horizontal Control Planes 
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The SetPosition behavior is provided as a means of resetting the vehicle’s 

internally maintained position data to a new value.  The “SetPosition” element has a 

mandatory child element from the AbsoluteHorizontalPositionElements group that 

defines the new geographic position and an optional “Depth” element 

(positiveScalarElementType) specifying the current depth below the surface. 

The SetStandoff behavior is used to change the capture radius of 

waypoints, hover points, and loiter points (i.e., the distance at which a waypoint, loiter 

point, or hover point is considered achieved).  Defined with a positiveScalarElementType 

element, the “value” attribute specifies the new capture radius in meters.  While not 

directly affecting vehicle control, the standoff distance is an implicit part of all Waypoint, 

Hover, and Loiter behaviors and remains in effect until superseded. 

Used primarily in simulations, the SetTime behavior changes the vehicle’s 

internally maintained time.  It is defined using a positiveScalarElementType element 

where the “value” attribute specifies the number of seconds since beginning execution. 

Also used primarily in simulations, the SetTimeStep behavior changes the 

amount of time between each iteration of the main control loop.  Also defined using a 

positiveScalarElementType element, the “value” attribute determines the time (seconds) 

for each loop iteration.  The new closed-loop time step remains in effect until superseded. 

The Trace behavior is the final UUV task-level behavior intended for 

simulations.  It is used to enable and disable any verbose output based on the “value” 

attribute of a booleanElementType element.  The setting specified by a Trace behavior 

remains in effect until superseded. 

The Wait and WaitUntilTime behaviors do not directly influence vehicle 

control, but are used to extend the activation period of currently active behaviors, most 

commonly, Hover or Loiter.  Both are defined with positiveScalarElementType elements.  

The “value” attribute of a “Wait” element defines the amount of time (seconds) following 

activation that the behavior is to remain active.  The “value” attribute of a 

“WaitUntilTime” element, on the other hand, defines an absolute clock time (seconds 

from execution start) at which the behavior is to deactivate.  While active, a Wait or 

WaitUntilTime behavior will preclude the activation of further behaviors.  Under normal 
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circumstances, a Wait or WaitUntilTime behavior will remain active until its termination 

time unless terminated by a higher-level in a multi-layer control architecture. 

The final UUV task-level behavior is the Waypoint behavior.  It is used to 

order the vehicle to transit to a specific geographic location and is defined with an 

element of the form of Figure A.12.  The waypoint position is specified in relative or 

absolute terms with an element from the HorizontalPositionElements group.  Depth 

below the surface or altitude above the bottom is optionally ordered using an element 

from the DepthTypeElements group.  An optional trackModeElementType element can 

order the vehicle to continuously proceed directly towards the waypoint or track along 

the path between the previous and current waypoints.  An en route GPS fix is ordered 

with an optional “ObtainGps” element (booleanElementType).  Finally, the waypoint 

capture radius is optionally defined with a “Standoff” element and the time allotted to 

reach the waypoint is optionally specified with a “TimeOut” element (both 

positiveScalarElementType).  A Waypoint behavior terminates upon reaching the 

waypoint or upon timing out (the behavior will not time out if the “TimeOut” element is 

omitted) unless its activation is extended using a Wait or WaitUntilTime behavior. 

c. UGV Behaviors 

The majority of task-level behaviors available for UGV use are identical 

to those for UUV use.  The FollowBeacon, MakeHeading, MakeKnots, MakeSpeed, 

MetaCommand, MissionScript, MissionScriptInline, Quit, Realtime, SendMessage, 

SetStandoff, SetTime, SetTimeStep, Trace, Wait, and WaitUntilTime behaviors all fall 

into this category.  The remaining UGV behaviors also have UUV counterparts, but their 

content models vary somewhat because of the inherent differences in vehicle capabilities. 

All other UGV behaviors also have UUV counterparts, but their content 

models are not identical.  The CompositeWaypoint, Loiter, SetPosition, and Waypoint 

behaviors make up this category.  These behaviors are identical to their UUV 

counterparts in execution, semantics, and activation / termination criteria.  The content 

differences consist of the absence of elements and attributes relating to depth below the 

surface or altitude above the bottom, and the elimination percentage of maximum 

available power as a means of specifying speed (UGV speed is specified with 

“MakeKnots” and “MakeSpeed” elements). 
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Figure A.12.   An AVCL Element for Initiating a UUV Waypoint Behavior 

 

d. USV Behaviors 
The elements used to specify UGV behaviors are all available for use in 

specifying the same behavior for a USV without modification.  Additionally, the 

elements used to specify the UUV SetPower and SetRudder behaviors are used to specify 

the USV behavior of the same name.  In all cases, the content model and semantics of the 

element used to define the USV behavior are identical to those of the UGV or UUV 

behavior as are the behavior activation and termination criteria. 
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e. UAV Behaviors 

Not surprisingly, the content models and semantics of the majority of 

elements for specifying UAV task-level behaviors match those of the corresponding 

behaviors for one or more other vehicle types.  The definition elements of the UAV 

FollowBeacon, MakeHeading, MakeKnots, MakeSpeed, MetaCommand, MissionScript, 

MissionScriptInline, Quit, Realtime, SendMessage, SetStandoff, SetTime, SetTimeStep, 

Trace, Wait, and WaitUntilTime behaviors are identical to those of all other vehicles.  

Additionally, definition element for the UAV SetRudder behavior matches those of the 

corresponding UUV and USV behavior. 

The elements for defining the UAV CompositeWaypoint, Loiter, 

SetPosition, and Waypoint behaviors are similar to those of the other vehicle types as 

well.  The UAV “SetPosition” element, for instance, differs from that of the 

corresponding UUV element only in the replacement of the optional “Depth” child 

element with an optional “MSLAltitude” element to specify the vehicles current mean-

sea-level altitude.  The UAV “CompositeWaypoint” element (Figure A.13) differs from 

that of the UUV in two regards.  The first is an element from the AltitudeTypeElements 

group (replacing one from the DepthTypeElements group) that specifies the above 

ground level or mean sea level altitude for pattern’s waypoints.  The second difference is 

that as with UGVs and USVs, speed is orderable in knots or meters per second, but not as 

a percentage of maximum power.  The UAV “Loiter” and “Waypoint” elements (Figure 

A.14) also replace depth and speed elements of the UUV-specific element in this way. 

Additionally, AVCL provides a number of closed-loop / open-ended and 

open-loop behaviors that do not correspond to behaviors of another vehicle type.  These 

are listed and described in Table A.13.  As with other closed-loop / open-ended and open-

loop behaviors, these UAV behaviors remain active until superseded. 
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Figure A.13.   An AVCL Element for Initiating a UAV Composite Waypoint Behavior 

 

 
Figure A.14.   AVCL Elements for Initiating UAV Loiter and Waypoint Behaviors 
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UAV Behavior Element Type Description 

MakeAltitudeAGL positiveScalarElementType Orders the vehicle to maintain the specified 
above ground level altitude (meters). 

MakeAltitudeMSL positiveScalarElementType Orders the vehicle to maintain the specified 
mean sea level altitude (meters). 

MakeClimbRate signedPercentElementType Orders the vehicle to climb or descend at a 
percentage of its maximum available rate. 

MakeTurnRate signedPercentElementType Orders the vehicle to turn left or right 
(negative) at its maximum available rate. 

SetAileron signedPercentElementType
Orders a percentage of maximum aileron 
deflection (left and right are opposite, positive 
order induces a right bank). 

SetElevator signedPercentElementType
Orders a percentage of maximum available 
elevator or horizontal stabilator deflection 
(positive is leading edge up). 

SetPower percentElementType Orders a percentage of maximum available 
engine power (effects all engines equally). 

Table A.13.   Elements for Specifying UAV-Specific Closed-Loop / Open-Ended and Open-
Loop Behaviors 

 

2. Declarative Missions 

a. Overview 

The second method of defining a mission using AVCL is as a declarative 

agenda.  An agenda consists of high-level goals that are to be accomplished over the 

course of a mission and constraints that must be observed throughout the mission’s 

execution.  Unlike scripted missions, AVCL agendas are largely vehicle-type 

independent.  AVCL agendas can, however, define operating areas with depth or altitude 

restrictions that make them inherently applicable only to UUVs or UAVs respectively.  

The “AgendaMission” element defining an AVCL agenda is the last acceptable child 

element of the “MissionPreparation” element depicted in Figure A.6. 

The structure of the “AgendaMission” element is depicted in Figure A.15.  

The first two child elements are optional “LaunchPosition” and “RecoveryPosition” 

elements, both from the AbsoluteHorizontalPositionElements group.  These elements are 

used to specify the geographic position of the vehicle at mission commencement and the 

desired position at the mission conclusion.  If the “LaunchPosition” element is omitted, it 

is assumed that the launch position is irrelevant (i.e., the vehicle will be able to determine 

its position at launch).  If the “RecoveryPosition” element is omitted but the agenda 
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includes a “LaunchPosition” element, the specified launch position will also be used for 

the recovery position.  If neither element is present, the assumed vehicle response is to 

conclude the mission immediately following the success or failure of the final goal.  It is 

allowable, however, for the vehicle to return to its run-time determined launch position 

following completion of the last goal. 

The only required child element of the “AgendaMission” element is the 

“GoalList” element containing definitions for all of the goals that might be executed over 

the course of the mission.  Mission execution begins with the first goal of the mission.  

The execution order of all subsequent goals is determined by the success and failure of 

individual goals and the goal definitions themselves.  The content models of individual 

goals is discussed in a subsequent section of this appendix. 

The final child of the “AgendaMission” element is the “ConstraintList” 

element.  This element contains three optional child elements as depicted in Figure A.15.  

“IngressRouting” and “EgressRouting” elements contain routing, altitude, or depth 

restrictions for the transit to and from the operating area and “AvoidArea” elements 

contain geographic areas, depths, or altitudes that are to be avoided during the mission.  

The content model descriptions for the routeElementType and areaElementType. 

b. Route and Area Definition 
Routing in an AVCL agenda is used only in conjunction with ingress and 

egress.  It provides a means of specifying geographic points that the vehicle is to utilize 

or altitude or depth restrictions as it transits to and from the operating area.  The 

routeElementType content model is depicted in Figure A.16.  It consists of an optional 

sequence of “LatitudeLongitude” or “XYPosition” elements that define geographic 

positions that make up the route and an optional element from the VerticalBlockElements 

group that describes the route’s depth or altitude requirements.  It is permissible in AVCL 

to define the geography of a route without vertical restrictions or vice versa.  In fact, it is 

syntactically valid for a routeElementType element to contain neither geographic points 

nor vertical requirements, however, this is not useful in practice. 
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Figure A.15.   An AVCL Element for Defining a Declarative Agenda Consisting of High-

Level Goals that are to be Accomplished over the Course of a Mission 

 

 
Figure A.16.   AVCL Complex Types Used to Define Routes and Areas that can Include 

Altitude or Depth Components 

 
Also depicted in Figure A.16 is the AVCL areaElementType content 

model.  This element is used to define all avoid areas and operating areas associated with 
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an AVCL agenda.  An areaElementType element has a required child element from the 

AreaElements group that defines the geographic dimensions of the area.  Additionally, 

the element has an optional element from the verticalBlockElements group that defines 

the depth or altitude dimensions of the area.  If this element is omitted, the area’s vertical 

dimensions are unbounded. 

c. Goal Definition 

An individual goal of an agenda mission are defined with a “Goal” 

element of the type depicted in Figure A.17.  Among all of the AVCL elements and 

complex types, the agendaGoalElementType is the only one for which the “id” attribute 

is required.  This allows goals to refer to one another using the “nextOnSucceed” and 

“nextOnFail” attributes (xsd:IDREF) which are used to define goal sequencing.  The goal 

referred to by the “nextOnSucceed” attribute is to be executed next if the referring goal is 

completed successfully while the goal referred to by the “nextOnFail” attribute is to be 

executed next if the goal fails.  The remaining attribute that is unique to the 

agendaGoalElementType is the “alert” element (xsd:boolean).  If the “alert” element 

value is “true,” the vehicle is to proceed to the area and wait until directed to commence.  

If the value is “false,” the vehicle is to commence goal execution immediately upon 

arriving in the operating area. 

The first child of a “Goal” element is a member of the GoalElements 

group and identifies the type of goal and all of the type-specific requirements.  The 

content models of this group will be discussed shortly.  The second child element is an 

areaElementType “OperatingArea” element defining the area in which the goal is to be 

accomplished.  The next child element is either a “Duration” or “Timing” element.  A 

“Duration” element (positiveScalarElementType) is used to specify the amount of time 

(seconds) the goal has to succeed following commencement.  A “Timing” element, on the 

other hand, has “start” and “stop” attributes (both positiveScalarType) that specify the 

goal start and end times (seconds from mission commencement).  The final child 

elements are zero or more “ReportingCriteria” elements that specify the conditions under 

which the vehicle is make reports during goal execution.  A “ReportingCriteria” element 

has a “value” attribute of reportingCriteriaType, and an optional periodicity attribute 

(positiveScalarType) that is relevant only when the “value” attribute is set to “periodic.” 
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Figure A.17.   An AVCL Element for Defining Individual Goals of a Declarative Agenda 

Mission 

 
AVCL provides for specifying 12 types of goals that are defined using 

elements (naming matches the goal type):  Attack, Decontaminate, Demolish, 

IlluminateArea, Jam, MarkTarget, MonitorTransmissions, Patrol, Rendezvous, 

Reposition, SampleEnvironment and Search.  The content models of the AVCL elements 

used for specifying each of these is depicted in Figure A.18, and the attributes associated 

with each of these elements is described in Table A.14.  The following paragraphs 

describe the semantics of the various goal types.  Generally speaking, a goal is considered 

successful if it is specified as an alert and no execute order is received before the goal 
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times out, and unsuccessful if the vehicle fails to reach the operating area in time (by the 

designated start time or the end of the goal duration).  Further conditions for goal success 

or failure are type-specific.  

An Attack goal is used to direct the vehicle utilize weapons to engage 

targets within the operating area.  An “Attack” element has zero or more “Target” child 

elements that identify the target types (omission indicates that vehicle defaults dictate 

targets).  An Attack goal is considered successful if the “singleTarget” attribute has a 

value of “true” and a target is successfully engaged, or following goal time-out if at least 

one successful engagement was conducted. 

 
Figure A.18.   AVCL Element Content Models for Specifying Goals of a Declarative 

Agenda Mission 
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Element Attribute Type Use Description 

weaponStatus weaponStatusType
optional 
(default 
"tight") 

Specifies conditions under 
which targets can be 
engaged. Attack 

singleTarget xsd:boolean 
optional    
(default 
"false") 

Set to "true" if there are 
potentially multiple targets. 

Demolish singleTarget xsd:boolean 
optional    
(default 
"false") 

Set to "true" if there are 
potentially multiple targets. 

Rendezvous targetVehicleID xsd:string required Identifies the vehicle that is 
to be rendezvoused with. 

datumType datumTypeType required 
Specifies whether the 
search is to be point or area 
focused. 

requiredPD percentType required 
Specifies the required 
probability of detection of 
the search. 

Search 

singleTarget xsd:boolean 
optional    
(default 
"false") 

Set to "true" if there are 
potentially multiple targets. 

Target name xsd:string required 
Identifies a target type for 
attack, demolition, or 
search. 

Contaminant type contaminantType required Identifies a contaminant 
type. 

minFrequency positiveScalarType required 
A minimum frequency of a 
monitoring or jamming 
range. 

maxFrequency positiveScalarType required 
A maximum frequency of a 
monitoring or jamming 
range. 

FrequencyRange 

units frequencyUnitType optional 
(default “Hz”)

Wavelength units of the 
max and min frequencies. 

Illuminator type illuminatorType required Type of light source to use 
for area illumination. 

IlluminatorCharacteristic value xsd:string required A arbitrary characteristic of 
an illuminator 

Marker type markerType required Specifies a laser or smoke 
marker. 

MarkerCharacteristic value xsd:string required 
Specifies a marker 
characteristic for a Mark 
goal. 

Qualifier value xsd:string required 
Amplifying information 
about a Patrol or 
Rendezvous goal. 

Table A.14.   Attributes of AVCL Elements Used to Define Goals in a Declarative Agenda 

 

A Decontaminate goal directs the vehicle to remove specified 

contaminants from the operating area.  The types of contaminants to be removed are 

specified using one or more “Contaminant” child elements.  A Decontaminate goal is 

considered successful if the vehicle completes an area-wide environmental-sampling 
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pattern the entire area and removes any contaminants that are detected.  It is considered 

unsuccessful if it fails to sample the entire area within the allotted time or is unable to 

remove a detected contaminant. 

A Demolish goal is similar to an Attack goal except that it does not 

contain a “weaponStatus” element.  It is used to direct the vehicle to physically destroy 

one or more targets within the operating area.  It is used instead of an Attack goal for 

targets for which a weapons status is not appropriate (i.e., targets that are not classifiable 

as “hostile” or “friendly” such as a building). 

An IlluminateArea goal directs the vehicle to provide light illumination to 

an area.  The type of illumination is specified with the “Illuminator” child element which 

call calls for floodlight, spotlight, or pyrotechnic illumination.  The goal is considered 

successful if the vehicle provides illumination over the required time period. 

A Jam goal directs the vehicle to prevent the use of radar or 

communications within the operating area on the frequencies specified by one or more 

“FrequencyRange” elements.  The goal is considered successful if the all targeted 

emissions during the specified period are jammed. 

A MarkTarget goal directs the vehicle to provide a marking for one or 

more specified targets.  A “Marker” child element is used to specify the type of marker 

that is to be used (laser, smoke, or dye marker) and the “Marker” element can be further 

qualified with one or more “MarkerCharacteristic” elements.  The types of targets to be 

marked are specified using one or more “Target” elements.  A MarkTarget goal is 

considered successful if at least one target is identified and marked before the goal times 

out (laser marking requires that the laser remain trained on the target until the goal end 

time). 

A MonitorTransmissions goal directs the vehicle to monitor electronic 

emissions in specified frequency ranges (communications and / or radar).  Ranges to be 

monitored are specified using zero or more “FrequencyRange” elements with a content 

model identical to that of the element used in Jam goal definitions.  If no frequency 

ranges are specified, all electronic emissions are to be monitored.  A 
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MonitorTransmissions goal is considered successful if the vehicle is on station with an 

operational receiver for the prescribed period whether transmissions are detected or not. 

A Patrol goal requires the vehicle to wander over the operating area 

making observations for the specified time.  The specific objectives of the goal (e.g., 

noting vehicular activity, changing environmental characteristics, etc.) are defined using 

zero or more “Qualifier” elements.  A Patrol goal is considered successful if the vehicle is 

within the operating area with functional mission systems for the required period whether 

any activity of note is observed or not. 

A Rendezvous goal directs the vehicle to proceed to the operating area and 

make contact with another vehicle (specified with a “targetVehicleID” attribute).  

Additional rendezvous requirements are defined using zero or more “Qualifier” child 

elements.  A rendezvous goal succeeds only if the target vehicle is contacted. 

A Reposition goal causes the vehicle to transition from one geographic 

area to another.  A “Reposition” element contains an optional “Routing” child element 

complying with the content model of the “IngressRouting” and “EgressRouting” 

elements.  This element defines en route altitude or depth restrictions or geographic 

points that the vehicle is to use as intermediate waypoints during the transit to the 

operating area.  A Reposition goal is considered successful if the vehicle enters the 

operating area before the goal times out.  If the operating area is specified as a point, the 

goal will succeed if the vehicle gets within the capture radius. 

A SampleEnvironment goal directs the vehicle to test the operating area 

environment for contaminants or environmental conditions.  Contaminants are specified 

with zero or more “Contaminant” child elements.  If no “Contaminant” elements are 

used, the vehicle is to record the environmental conditions of the area (e.g., temperature, 

salinity, etc.).  A SampleEnvironment goal succeeds only if the entire area is sampled 

within the specified time, however, actual detection of contaminants is not required. 

A Search goal directs the vehicle to conduct a search of the operating area 

using all available sensors.  The “requiredPD” and “datumType” attributes specify the 

required probability of detection of the search and whether the search is to focus on the 

centroid of the area or cover the entire area equally.  An optional “singleTarget” (default 
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of “false”) attribute specifies whether or not there is a possibility of multiple targets.  The 

search objectives are specified using zero or more “Target” child elements.  If no 

“Target” elements are utilized, the vehicle defaults determine the search objectives.  A 

Search goal with a “singleTarget” attribute value of “true” succeeds immediately if the 

search objective is located.  If the “singleTarget” attribute is “false,” the goal will succeed 

if the entire operating area is searched regardless of the number of objectives located. 

F. MISSION RESULTS 

1. Overview 

Like mission definitions, mission results are encoded in an AVCL document with 

an “AVCL” root element.  Results data is contained in “MissionLog” and 

“MissionResults” elements that follow the “MissionPreparation” element as depicted in 

Figure A.5.  The “MissionLog” element contains discrete events that might occur 

arbitrarily over the course of the mission.  The “MissionResults” element, on the other 

hand, contains sampled vehicle state information (i.e., telemetry and control orders) from 

various points in the mission.  Examples include target detections, message receipts and 

transmissions, and behavior activations.  The content of these two elements is discussed 

in the following sections. 

2. Discrete Event Logging 
The “MissionLog” element contains a sequence of zero or more “UUVEvent,” 

“UGVEvent,” “USVEvent” or  “UAVEvent” elements (element name corresponds to the 

vehicle type), each containing a single child element corresponding to an event.  Unlike 

other AVCL elements, the “timeStamp” attribute of each of these elements is required in 

order to facilitate post-mission data analysis.  Acceptable child elements include task-

level behaviors appropriate for the vehicle-type (to facilitate a behavior-activation 

timeline) and inter-vehicle messages (described in Section G) as a means of recording 

message receipt and transmission activity.  Additionally, the five elements depicted in 

Figure A.19 are available to log other potential events of interest (particularly those 

relating to the accomplishment of declarative mission goals). 

AVCL “Contact” elements describe targets that are detected or tracked over the 

course of a mission.  Content includes required “name” and “contactID” attributes 

(xsd:string and positiveIntType respectively) identifying the contact.  The “contactID” 



 

292 

attribute is intended to uniquely identify a particular target, so multiple “Contact” 

elements with the same “contactID” value refer to the same actual contact.  Child 

elements include a required element from the AbsoluteHorizontalPositionElements group 

and an optional element from the VerticalBlockElements group that describe the 

contact’s location at time it is logged.  Additional optional elements include “Heading” 

(headingElementType) and “Velocity” (nonNegativeScalarElementType) elements that 

describe the vehicle’s motion when the event is logged. 

A “Contaminant” element records information about a chemical, radiological, 

biological or other contamination detected by the vehicle.  A required “contaminant” 

attribute (contaminantType) identifies the type of contamination that was detected.  A 

required element from the AbsoluteHorizontalPositionElements group and an optional 

element from the VerticalBlockElements group describe the location of the detection. 

 
Figure A.19.   AVCL Elements Used for Logging Asynchronous Discrete Events 
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A “SignalOfInterest” element documents the detection of electronic or acoustic 

transmissions.  Required “frequency” (positiveScalarType) and optional “units” attributes 

(frequencyUnitType, default “Hz”) specify the transmission that was detected.  An 

optional “content” element is available to include transmission content if required. 

The “GoalStatus” element provides documentation of declarative agenda mission 

goal execution progress.  A required “goal” attribute (xsd:IDREF) refers to the agenda 

goal and a required “status” attribute (xsd:string) contains a free-text description of the 

status change (e.g., “commence,” “succeed,” “fail” or “in operating area”). 

Semantically similar to the “GoalStatus” element, the “VehicleStatus” element 

documents changes to the status of vehicle systems.  Required “system” and “status” 

attributes (both xsd:string) identify the system in question and describe the nature of the 

status change (e.g., “shut down” or “low power due to overheating”). 

3. Sampled Continuous Data 
The “MissionResults element has two potential child elements.  The first is an 

optional “MissionStartTime” element that contains “day” (calendarDaysType), “year” 

(positiveIntType), “month” (monthsType), “hour” (clockHoursType), “minute” 

(clockMinutesOrSecondsType), “second” (clockMinutesOrSecondsType), and 

“timeZone” (timeZoneType) attributes. 

Following the “MissionStartTime” element (if present), are zero or more 

“SampledResults” elements containing sampled telemetry or control order information.  

As depicted in Figure A.20, this element contains a vehicle-type-specific telemetry 

element and / or a vehicle-type-specific control orders element. 

 
Figure A.20.   An AVCL Element for Recording Vehicle Telemetry and Control Orders 
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Figure A.21.   AVCL Elements for Sampled Vehicle Telemetry 

 

The content models of the vehicle-specific control-order elements are depicted in 

Figure A.22.  As with telemetry elements, all child elements of vehicle-specific any 

control-order element is optional to allow for encoding arbitrary partial control-order 

content.  The most complex content model is associated with UAVs to facilitate the 

element’s use to encode control orders for both fixed-wing and rotary-wing UAVs.  At 

the time of this writing, the content model for the “UGVControlOrder” element is still 

being developed.  The attributes associated with all potential control-order element child 

elements are described in Table A.15. 
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Figure A.22.   AVCL Elements for Sampled Vehicle Control Orders or Settings 

 

G. INTER-VEHICLE MESSAGING 

1. Overview 

Inter-vehicle messages encoded in AVCL are contained in documents with an 

“AVCLMessage” or “AVCLMessageList” root element.  With the exception of the 

specific contents of the “body” child element (which contains one or more 

“AVCLMessage” elements), the content model of documents with an 

“AVCLMessageList” root element was discussed in Section D of this appendix.  On the 

other hand, the content model of documents with an “AVCLMessage” root element was 

not discussed beyond the required “head” and “body” child elements.  Thus, the 

remainder of this section focuses on the content model of these AVCL message 

components. 
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Element Attribute Type Use Description 

port signedPercentType Optional Percentage of available power ordered to the port 
propeller. 

starboard signedPercentType Optional Percentage of available power ordered to the 
starboard propeller. 

Propellers 

centerline signedPercentType Optional percentage of available power ordered to the 
centerline propeller. 

Rudder value signedPercentType Required Ordered percentage of available rudder deflection 
(positive leading edge right). 

stern signedPercentType Optional Ordered percentage of available bow-plane 
deflection (positive leading edge up). 

Planes 
bow signedPercentType Optional Ordered percentage of available stern-plane 

deflection. 

bowLateral signedPercentType Optional Percentage of available power ordered to the bow 
lateral cross-body thruster (positive pushes right). 

sternLateral signedPercentType Optional Percentage of available power ordered to the 
stern lateral cross-body thruster. 

bowVertical signedPercentType Optional
Percentage of available power ordered to the bow 
vertical cross-body thruster (positive pushes 
down). 

BodyThrusters 

sternVertical signedPercentType Optional Percentage of available power ordered to the 
stern vertical cross-body thruster. 

engine1 percentType Required Percentage of available power ordered to the 
number 1 (or only) engine of a UAV. 

Engines 
engine2 percentType Optional Percentage of available power ordered to the 

number 2 engine of a UAV. 

Aileron value signedPercentType Required Ordered percentage of available aileron deflection 
(positive induces right roll). 

port signedPercentType Required Ordered percentage of available port elevator or 
stabilator deflection (positive leading edge up).  

Elevator 

starboard signedPercentType Required Ordered percentage of available starboard 
elevator or stabilator deflection. 

Collective value percentType Required Ordered percentage of available collective 
(power) for a rotary wing UAV. 

longitudinal signedPercentType Required Ordered percentage of fore-aft cyclic (positive 
forward) for a rotary wing UAV. 

Cyclic 
lateral signedPercentType Required Ordered percentage of left-right cyclic (positive 

right) for a rotary wing UAV. 

Pedals value signedPercentType Required Ordered percentage of available tail-rotor 
authority (positive right) for a rotary wing UAV. 

Table A.15.   Attributes Associated with AVCL Vehicle-Specific Control-Order Elements 
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2. The AVCL Message Header 

The “head” child of an “AVCLMessage” element contains the message header 

and complies with the content model depicted in Figure A.23.  Zero or more “meta” 

elements (complying with the content model of previously discussed “meta” and 

“MetaCommand” elements) provide arbitrary descriptive information about the message.  

An optional “Priority” element (priorityElementType) specifies the importance of the 

message.  If this element is omitted, the message is assumed to be of routine priority.  A 

“Sender” element (positiveIntegerElementType) identifies the vehicle from which the 

message originates.  Zero or more nonNegativeIntegerElementType “Recipient” elements 

identify the vehicles to which the message is being transmitted.  A “value” attribute of 

“0” in a “Recipient” element identifies a broadcast message that provides information of 

potentially global interest.  Finally, an optional acknowledgeElementType 

“Acknowledge” element specifies the receiving vehicles’ acknowledgement 

requirements.  Omission of the “Acknowledge” element indicates that the message does 

not require acknowledgement. 

 
Figure A.23.   Content Model of the AVCL Message Header 

 

3. The AVCL Message Body 

The content model of the AVCL message “body” element consists of a single 

child element from the choices depicted in Figure A.24.  This element contains the 
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information that is to be conveyed by the inter-vehicle message.  The specific content 

models of the individual child elements have been discussed previously in various 

portions of this appendix, so the intent of the remainder of this section focuses on the 

semantics of the various potential child elements. 

 
Figure A.24.   The AVCL Message “body” Element Content Model 

 
An element from the MissionSpecification group (“UUVCommandScript,” 

“UGVCommandScript,” “USVCommandScript,” “UAVCommandScript,” or 

“AgendaMission”) directs the recipient vehicle to execute the contained task-level 

behavior script of agenda mission.  Similarly, a vehicle-type-specific command element 
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(e.g., “UUVCommand”) containing a single task-level behavior requests that the 

recipient activate the contained behavior.  In both cases, the receiving vehicle is required 

to comply with the request only if able to do so and only if the sending vehicle has the 

authority to direct the activity. 

As the name implies, a message body containing an “InformationRequest” 

element requests information from the receiving vehicle rather than activity.  The type of 

information requested is identified with a required informationRequestType “value” 

element.  Unlike the mission-execution or behavior-request messages, a vehicle receiving 

an information request message is to provide the requested information if able regardless 

of the authority of the sending vehicle. 

The final request-type message per (FIPA, 02) in the AVCL vocabulary uses a 

“GroupMaintenance” element with a required “request” attribute 

(groupMaintenanceType).  The response to a group maintenance message is currently 

under development, but is expected to be along the lines of  the protocols described and 

proposed by CoDA project in (Chappell, et al., 97) and (Turner and Turner, 04). 

Inform messages include those conveying vehicle characteristics, vehicle state 

and events of interest.  Vehicle characteristics are provided in messages with a 

“UUVCharacteristics,” “UGVCharacteristics,” “USVCharacteristics,” or 

“UAVCharacteristics” element with the same content model as the vehicle-characteristics 

child element used in the “MissionPreparation” element (Figure A.6).  A “VehicleState” 

element complies with the content model of the “SampledResults” element depicted in 

Figure A.20 and provides information about the sending vehicle’s current telemetry or 

control status.  Finally, the content models of the “UUVEvent,” “UGVEvent,” 

“UGVEvent” or “UAVEvent” elements are identical to the same-named child elements 

of the “EventLog” element discussed in Section A. and convey information about 

asynchronous events that occur over the course of a mission. 
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APPENDIX B:  THE AUTONOMOUS AND UNMANNED VEHICLE 
WORKBENCH (AUVW) 

A. INTRODUCTION 

The AUVW is an ongoing NPS project aimed at addressing the paucity of 

vehicle-independent planning systems.  Designed around the functionality provided by 

AVCL, the AUVW is a Java application for UAV, USV, UGV and UUV mission-

planning, mission-rehearsal and mission-playback.  Features include a geographically 

synchronized two-dimensional graphical user interface for mission development and 

editing, physics-in-the-loop mission rehearsal using six-degree-of-freedom models, two-

dimensional and three-dimensional visualization of mission progress, import and export 

of vehicle-specific data, and networked communication between the AUVW and vehicles 

before, during and after mission execution. 

AUVW features utilize the Java Look + Feel guidelines to achieve cross-platform 

compatibility.  Additionally, the JavaHelp system has been utilized to provide extensive 

documentation in a context-sensitive manner throughout the workbench toolbars and 

buttons.  Details of the initial AUVW implementation and capabilities are documented 

extensively in (Lee, 04).  Additional functionality is discussed in (Davis and Brutzman, 

05).  This appendix summarizes relevant portions of these documents and provides an 

overview of updated AUVW features as well.  Topics include an overview of AUVW 

mission-planning functionality, mission-rehearsal capability, the use of X3D graphics and 

the DIS protocol to support visualization, and components supporting operation and 

interaction with actual vehicles and operators. 

B. SCRIPTED MISSION PLANNING AND EDITING 
The AUVW supports development of scripted autonomous vehicle missions using 

AVCL task-level behaviors.  Multiple graphical user interface displays are provided that 

allow for adding new task-level behaviors to a script and editing existing behaviors.  

Additionally, the editor supports simultaneous testing and editing of multiple missions.  

An example of this functionality is  depicted in Figure B.1. 

The AUVW provides three behavior-level display formats for viewing AVCL 

task-level script missions, two of which are depicted in Figure B.2.  The view providing 
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the most editing functionality is the icon view which uses a list of icon / name pairs to 

graphically depict the task-level script.  Individual behaviors can be added to the end of 

the mission or inserted anywhere in the mission using either a pulldown or a popup menu.  

Behavior-type-specific dialog boxes similar to the one depicted in Figure B.3 are used to 

edit individual commands.  These dialog boxes are activated via the same menus or by 

double-clicking the command in the icon list.  Individual commands can be deleted, 

copied, or moved to new locations in the script using pulldown or popup menus or user-

specified hot keys.  Additionally, the popup and pulldown menus provide the capability 

to add general mission metadata or set the mission’s geographic origin (i.e., the 

geographic position of the origin of the earth-fixed Cartesian coordinate system utilized 

throughout the mission file). 

 
Figure B.1.   Screen Snapshot of the AUVW being used to Simultaneously Edit Scripted  

UAV, USV and UUV Missions (From:  Davis and Brutzman, 05) 
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Figure B.2.   AUVW Icon and Tree Views of an AVCL Task-Level Behavior Script 

 

 
Figure B.3.   AUVW Dialog Box for Editing UUV Waypoint Behaviors                        

(From:  Davis and Brutzman, 05) 
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Although capable of accessing all AUVW task-level mission editing functions, 

the icon view does not depict the full AVCL document.  Header information, metadata, 

and mission-results elements, for instance, are not displayed.  The tree and text views, 

however, can be utilized to view portions of the AVCL document not accessible from the 

icon view.  An example of an AVCL task-level behavior script in the tree view is 

depicted in Figure B.2.  In the present AUVW implementation, the tree and text views 

cannot be used for script editing. 

While the icon, tree and text views provide the capability to view and edit all 

portions of an AVCL task-level behavior script, a geographic interface is a potentially 

more intuitive means of generating and editing autonomous vehicle missions.  The 

AUVW, therefore, provides multiple two-dimensional interfaces that complement the 

functionality of the other display methods.  The first displays the mission tracks of 

currently loaded missions on a Cartesian grid with the positive-X axis oriented true north 

and the positive-Y axis oriented true east.  Locations can be entered using Cartesian 

coordinates that are plotted directly on the two-dimensional display or latitude and 

longitude which are converted to Cartesian coordinates based on the user-defined 

geographic origin. 

Figure B.4, provides the two-dimensional mission view corresponding to the icon 

and tree views of Figure B.2.  A number of behaviors (i.e., Thrusters, MakeKnots, 

SendMessage and SetPower) that are depicted in the icon and tree views are not depicted 

in the two-dimensional view.  Unlike the icon, tree, and text views, the two-dimensional 

planner does not display all AVCL task-level commands in the mission, but only those 

task-level behaviors possessing a geographic component (CompositeWaypoint, Hover, 

Loiter, SetPosition, and Waypoint), so full mission editing capability is not provided 

from the two-dimensional view.  Nevertheless, these are among the most common 

behaviors utilized in autonomous vehicle missions, so most mission editing requirements 

can be accessed using the two-dimensional editor.  Drag and drop, snap to grid, click to 

highlight, and double-click to edit features support precise graphical-user-interface-based 

modification of existing behaviors.  In particular, the pulldown menu functionality to 

insert new commands (including those not visible in the two-dimensional display), copy, 
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move, edit or delete existing commands, add metadata or set the mission’s geographic 

origin provide a robust task-level mission editing capability. 

 
Figure B.4.   The AVCL Task-Level Behavior Script Corresponding to Figure B.2 

Depicted in the AUVW Two-Dimensional Cartesian Coordinate-Based 
Editing Interface (From:  Davis and Brutzman, 05) 

 
The final mission-editing display available in the AUVW is the geographically-

based OpenMapTM editor, an exemplar view of which is provided in Figure B.5.  

OpenMapTM is an open source Java API for handling geospatial data and digital map data 

(BBN, 01).  The AUVW utilizes U.S. Census Bureau Census 2000 Tiger/Line data in 

shapefile format (ESRI, 98) and Digital Nautical Charts to enable users to plan missions 

for a specific geographic area.  OpenMapTM allows the user to selectively enable and 
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disable dataset layers, so the display can be manipulated to include as much or as little 

geographic information as desired. 

 
Figure B.5.   UUV and UAV Task-Level Behavior Scripts Depicted in the OpenMapTM 

Editing Interface (From:  Davis and Brutzman, 05) 

 
As with the two-dimensional editor, only those task-level behaviors having a 

geographic component are overlaid in the OpenMapTM editor.  Still under development, 

the OpenMapTM editor provides only limited mission editing capability when compared 

with other AUVW modes.  At present, physical manipulation of task-level missions using 

the OpenMapTM editor is limited to drag and drop repositioning of individual behavior 

locations.  Additionally, all previously discussed pulldown menu functionality can be 

accessed while using the OpenMapTM editor.  Ultimately, it is envisioned that this editor 

will closely mirror, and possibly replace, the current AUVW 2two-dimensional planner. 

C. DECLARATIVE MISSION PLANNING AND EDITING 
Declarative mission editing is a fairly new addition to the AUVW and relies on 

the same or similar editing interfaces as scripted missions.  The two-dimensional editor is 
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available for viewing the layout of declarative missions as depicted in Figure B.6.  

Operating areas are displayed using translucent two-dimensional shapes while avoid 

areas are displayed using more opaque shapes.  Launch and recovery positions (if 

specified) are depicted as points labeled “L” or “R” respectively.  Declarative mission 

editing is not available through the two-dimensional display, although display-specific 

functionality (e.g., zoom) is available via popup menu.  Additionally, OpenMapTM editor 

functionality has not yet been updated to incorporate declarative mission visualization. 

 
Figure B.6.   An AVCL Declarative Agenda Displayed in the AUVW Two-Dimensional 

and Icon Views 

 
Editing of declarative AVCL missions is conducted using an icon view specific to 

these types of missions (also depicted in Figure B.6).  The declarative mission icon view 

includes entries for launch and recovery positions, goals, and avoid areas.  Entries can be 
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added to the mission using pulldown or popup menus, and existing entries can be edited 

by double-clicking the entry of interest.  As with the icon view associated with task-level 

behavior scripts, popup and pulldown menus provide the capability to add general 

mission metadata or set the mission’s geographic origin.  Additionally, the tree and text 

views are available when editing declarative missions as well. 

Double-clicking an existing goal for editing or utilizing the pulldown or popup 

menu to create a new goal will activate the dialog box depicted in Figure B.7.  This 

dialog box is used to specify all goal parameters including operating area, goal-type, 

goal-type-specific parameters, timing requirements, and follow-on goals upon success or 

failure.  Similar dialog boxes are provided for creating and editing declarative mission 

launch and recovery positions and avoid areas. 

 
Figure B.7.   An AUVW Dialog Box for Editing a Declarative Mission Goals 
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D. MISSION REHEARSAL 

1. Simulation in the AUVW 

Among the most important capabilities of the AUVW is the ability to realistically 

rehearse both scripted and declarative missions in a virtual environment.  Mission 

rehearsal utilizes physically-based models that accurately represent the vehicles for which 

the missions are being designed.  At present, UUV, USV and UAV models are 

implemented.  Model descriptions can be found in (Brutzman, 94), (Cooke, et al., 92) and 

in Chapter VIII of this dissertation.  All simultaneous simulated missions run in the same 

virtual environment enabling the operator to determine the effectiveness of multi-vehicle 

plans. 

Simulations can be constrained to run in real time or accelerated to improve 

performance.  During faster-than-real-time simulations involving multiple vehicles, 

synchronization is maintained by consistently matching all vehicle speedup factors (e.g., 

50 times real time).  In this way synchronization can be maintained not only among 

vehicle simulations running within a single AUVW session, but among those spawned by 

other, possibly distributed, AUVW instances as well. 

2. Environmental Modeling 
Proper modeling of environmental factors can produce major changes in sensor 

propagation, vehicle buoyancy, vehicle control and predicted power consumption.  

Therefore, multiple environmental datasets and services are being connected to the 

AUVW in order to maximize the real-world physics modeling capability for mission 

rehearsal and mission evaluation. 

The AUVW includes the ability to read supercomputer-generated Network 

Common Data Form (Rew, et al., 05) datasets which include four-dimensional (x y z t) 

gridded time series of ocean parameters such as sound speed profile, local ocean current 

and wind speed.  Similar real-time oceanographic parameters are also available via XML-

based mechanisms including web-service queries to Fleet Numerical Meteorological 

Oceanographic Center computers assets. 

3. Visualization 

The AUVW supports three-dimensional visualization of mission progress during 

mission rehearsal and playback through the use of X3D—an International Organization 
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for Standards (ISO) standardized format for web-capable three-dimensional graphics.  It 

utilizes an XML-enabled file format to facilitate the transfer of three-dimensional 

graphics data across networked applications.  Significantly more robust than its web-

capable three-dimensional predecessor, the Virtual Reality Modeling Language, X3D 

includes implicit support for DIS networking and incorporates a rigorously defined Scene 

Access Interface making it well-suited for use in the AUVW. 

X3D-based three-dimensional visualization is implemented in the AUVW with 

the Xj3D toolkit (Hudson, 04).  Xj3D is an open source API produced by Yumetech, Inc. 

for developing applications utilizing X3D content.  Implemented with the support of the 

Web3D Consortium as an exemplar X3D-compliant browser, Xj3D implements most 

aspects of the interchange, interactive and immersive X3D profiles (ISO and IEC, 04) as 

well as a number of proposed extensions to the ISO standard.  Figure B.8 shows the 

AUVW Xj3D viewer being used to monitor the operations of multiple UUVs in a virtual 

environment incorporating bathymetry and cartography near Panama City, Florida. 

 
Figure B.8.   ARIES and Seahorse UUVs Operating in the Same Virtual Environment as 

Seen in the AUVW Xj3D Viewer (From:  Davis and Brutzman, 05) 

 
A number of vehicle and virtual environment models are included in the AUVW 

distribution.  In addition, approximately 1000 models including vehicles, structures, 

sensors, terrain and even entire scenarios are available for unencumbered individual 
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government and corporate use in the Scenario Authoring and Visualization for Advanced 

Graphical Environments online archive (available at https://savage.nps.edu/Savage/).  A 

number of authoring tools are also available that facilitate the use of these and other 

models.  Thus, the development of large virtual environments remains time consuming, 

but is becoming a more straightforward process.  When coupled with the potential 

autogeneration of significant virtual environment content, the rapid creation of realistic 

virtual environments to rehearse and visualize real-world operations of arbitrary 

autonomous vehicles is becoming an achievable goal. 

4. The X3D Scene Access Interface 
Among the most important Xj3D features is implementation of the X3D Scene 

Access Interface—a portion of the X3D specification that provides for programmatic 

access to a loaded scene graph.  Within the AUVW, the Scene Access Interface enables 

dynamic generation of X3D content for addition to the existing virtual environment as 

well as the manipulation of existing content 

The first implemented AUVW dynamic generation of content using the Scene 

Access Interface takes the form of mission-path trackline addition to the scene.  Mission 

tracks are automatically created based on the content of the activated AVCL mission 

using X3D indexed line sets and billboards when the mission is loaded for rehearsal.  

This X3D content corresponding to a mission’s path is generated by applying an XSLT 

stylesheet to the AVCL document as described in the next section.  The resultant X3D is 

then added to the current virtual environment scene graph using the X3D Scene Access 

Interface.  If the mission is subsequently edited and rerun, the previously generated 

content is removed from the scene graph and replaced with updated content. 

A second use of the Scene Access Interface for manipulation of the AUVW 

virtual environment is its use for sensor modeling.  The virtual environment contains all 

of the objects with which the autonomous vehicles are intended to interact during mission 

rehearsal and playback.  Enough information is therefore contained in the scene graph for 

vehicles operating in the virtual environment to model various sensors through the use of 

collision detection and picking.  (Davis, 96) documented the use of C++ and the Open 

InventorTM SoRayPickAction (OIAG, 94) to model mechanically steered narrow-beam 

active sonars installed on the NPS Phoenix UUV.  Unfortunately, the X3D specification 
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does not support general collision detection along required for ray-picking operations.  

Xj3D, however, implements a proposed formal extension to the X3D specification that 

supports various forms of picking suitable for sensor modeling (Yumetech, 04).  

Specifically, the AUVW uses the Xj3D PrimitivePicker node to obtain the functionality 

provided by the Open InventorTM SoRayPickAction.  Individual nodes are created and 

added to the virtual environment using the Scene Access Interface upon the request of 

individual vehicle instances.  Each vehicle can manipulate pickers via the Scene Access 

Interface as required to model onboard sensors.  Individual sensors can be modeled with 

single picker nodes (as depicted in Figure B.9) or multiple nodes depending on sensor 

characteristics.  Currently implemented vehicles use this functionality to model 

fathometers, sonar and radar altimeters, and ranging sonars. 

 
Figure B.9.   Sensor Modeling using the X3D Scene Graph and Xj3D Picking Nodes  

(From:  Davis and Brutzman, 05) 

 

5. Distributed Interactive Simulation (DIS) 
Vehicle position in the virtual environment is maintained through the use of DIS 

updates with individuals periodically transmitting multicast entity state protocol data 

units.  Explicitly supported by X3D, entity state protocol data units are transmitted using 
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multicast and provide a means of simultaneously updating multiple views into a common 

virtual environment.  This inherently supports the use of multiple AUVW instances in a 

networked environment to provide for planning and rehearsal of multi-vehicle missions 

from different locations by synchronizing the virtual environment across the network.A 

recent addition to the AUVW is support for DIS XML.  This addition uses an Extensible 

Messaging and Presence Protocol (XMPP) channel to exchange entity state protocol data 

units encoded with XML (McGregor, et al., 06).  An Xj3D browser extension provides 

direct access to the XMPP channel from within the X3D scene graph and automatic 

monitoring of DIS XML packets.  Additional XMPP support provides AUVW user 

access to chat rooms through which DIS XML protocol data units pass. 

DIS support highlights an additional planned use of the Scene Access Interface:  

DIS entity monitoring to support automatic addition of applicable vehicle models to the 

scene graph.  When a protocol data unit is received, its content can be analyzed to 

determine whether or not its model is already contained in the virtual environment’s 

scene graph.  If not, the protocol data unit’s siteID, applicationID, entityID and marking 

fields provide enough information to uniquely identify the type of vehicle.  With this 

information, an instance of the appropriate vehicle that will correctly respond to 

subsequent entity state protocol data units can be created or loaded dynamically and 

inserted into the virtual environment scene graph. 

E. VEHICLE SUPPORT 

1. Data Format Conversion 
The AUVW provides for the automated generation of vehicle-specific missions 

from task-level behavior scripts with XSLT stylesheets as described in Chapter V.  The 

AUVW conducts XSLT transformations using the Xalan-Java API, an open source 

product of the Apache XML Project (Apache, 06).  The graphical user interface panel of 

Figure B.10 (activated via pulldown menu) is used to initiate the transformation of stored 

or loaded task-level behavior scripts as required. 

The AUVW also allows the import of vehicle-specific missions through context-

free-grammar-based conversion to task-level behavior scripts as described in Chapter V.  

This functionality is accessed via a pulldown menu providing for selection of the name 

and vehicle-specific format of import file.  As of this writing, mission import and export 
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support is provided for the NPS Phoenix and ARIES UUVs, the Naval Oceanographic 

Office Seahorse UUV, the Hydroid REMUS UUV and the JAUS message set. 

 
Figure B.10.   Support for Automated Conversion of Task-Level Behavior Scripts to 

Vehicle-Specific Formats Using XSLT Stylesheets                                    
(From:  Davis and Brutzman, 05) 

 

2. Communications 

All phases of autonomous vehicle operations generally require some level of 

communication between vehicles and operators.  During the pre-mission phase, the 

operator must be able to initialize the vehicle and load and initiate missions.  During 

mission execution, many vehicles are able to provide position and status reports or 

receive updated tasking.  Following execution, mission results must be downloaded from 

the vehicle to offboard systems for analysis and archiving.  The AUVW has a number of 

communications capabilities implemented or planned to support these requirements. 

Communications involving autonomous vehicles routinely utilize acoustic 

modems or other devices relying on serial communications.  The AUVW implements 

user-configurable serial communications and Kermit protocol file transfer appropriate for 

point-to-point communications between the AUVW and a variety of devices.  Also slated 

for implementation are File Transfer Protocol, Secure File Transfer Protocol, Terminal 

Emulation and Secure Shell facilities that will improve the flexibility and efficiency of 

communications between the AUVW and controlled vehicles that use Transmission 

Control Protocol / Internet Protocol networking. 

Collaboration support is provided through the implementation of XMPP-based 

chat and Hypertext Transfer Protocol (HTTP) server support.  XMPP-based chat provides 

for real-time communication between distributed AUVW users and also provides 
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infrastructure for the transfer of DIS XML packets.  HTTP support, on the other hand, 

provides for data sharing between various locations. 

F. AVAILABILITY AND DEVELOPMENT 

Due to the consistent use of XML, Java and Java Look + Feel, the AUVW has 

been successfully tested on Windows, MacOSX, Linux and Solaris systems.  An online 

autoinstaller is updated weekly, and installation Digital Versatile Discs (DVD) are 

available on request. 

Source code is available under an open source license that ensures unencumbered 

use by individuals, government projects and industry.  All source code, configuration 

files and documentation are maintained under Concurrent Version System control, 

allowing around-the –clock distributed development by qualified participants.  

Additionally, an archived mailing list is used to discuss design issues and problem 

resolution.  Finally, the Bugzilla tracking system is used to resolve all problems and 

precisely define new features.  Each of these resources and additional documentation is 

available online at https://www.movesinstitute.org/xmsf/xmsf.html#Projects-AUV.  
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